Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408358, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984565

RESUMO

Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.

2.
Microscopy (Oxf) ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955673

RESUMO

Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron beam sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.

3.
Chem Mater ; 36(11): 5611-5620, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38883434

RESUMO

Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 3): 182-192, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728046

RESUMO

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.

5.
Microscopy (Oxf) ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38635461

RESUMO

Differential phase contrast scanning transmission electron microscopy (DPC STEM) is a powerful technique for directly visualizing electromagnetic fields inside materials at high spatial resolution. Electric field observation within ferroelectric materials is potentially possible by DPC STEM, but concomitant diffraction contrast hinders the quantitative electric field evaluation. Diffraction contrast is basically caused by the diffraction-condition variation inside a field-of-view, but in the case of ferroelectric materials, the diffraction conditions can also change with respect to the polarization orientations. To quantitatively observe electric field distribution inside ferroelectric domains, the formation mechanism of diffraction contrast should be clarified in detail. In this study, we systematically simulated diffraction contrast of ferroelectric domains in DPC STEM images based on the dynamical diffraction theory, and clarify the issues for quantitatively observing electric fields inside ferroelectric domains. Furthermore, we conducted experimental DPC STEM observations for a ferroelectric material to confirm the influence of diffraction contrast predicted by the simulations.

6.
ACS Appl Energy Mater ; 7(6): 2101-2108, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38550299

RESUMO

One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.

7.
Nano Lett ; 24(11): 3323-3330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466652

RESUMO

Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.

8.
Nano Lett ; 24(10): 3112-3117, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416575

RESUMO

Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.

9.
Sci Adv ; 10(9): eadk6501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416833

RESUMO

Single and multi-atoms supported on oxide substrates ultimately increase the efficiency of noble metal atom use, and moreover, catalytic activity and selectivity are also improved substantially. However, single and multi-atoms are unstable under catalytic conditions, and these metal atoms spontaneously aggregate and grow into nanoparticles. Catalytic performance is strongly related to local atomic configurations, and hence, it is essential to determine the three-dimensional (3D) atomic structures of multi-atoms on the substrate and their structural dynamics. Here, we show the real-time tracking of the 3D structural evolution of a Pt trimer on TiO2 (110) substrate at a high temperature, using high-spatiotemporal-resolution scanning transmission electron microscopy, where sub-angstrom spatial resolution is maintained, while the temporal resolution reaches 40 milliseconds. With the aid of prior structural knowledge of a Pt trimer for 3D reconstruction, the present method could open the way to characterize in situ atomic-scale structural dynamics, especially meta-stable structural transition.

10.
Nat Commun ; 15(1): 851, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321026

RESUMO

Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.

11.
Microscopy (Oxf) ; 73(2): 154-168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37698551

RESUMO

Herein, we review notable points from observations of electrochemical reactions in a liquid electrolyte by liquid-phase electron microscopy. In situ microscopic observations of electrochemical reactions are urgently required, particularly to solve various battery issues. Battery performance is evaluated by various electrochemical measurements of bulk samples. However, it is necessary to understand the physical/chemical phenomena occurring in batteries to elucidate the reaction mechanisms. Thus, in situ microscopic observation is effective for understanding the reactions that occur in batteries. Herein, we focus on two methods, of the liquid phase (scanning) transmission electron microscopy and liquid phase scanning electron microscopy, and summarize the advantages and disadvantages of both methods.

12.
Nat Commun ; 14(1): 7806, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052780

RESUMO

Grain-boundary atomic structures of crystalline materials have long been believed to be commensurate with the crystal periodicity of the adjacent crystals. In the present study, we experimentally observed a Σ9 grain-boundary atomic structure of a bcc crystal (Fe-3%Si). It is found that the Σ9 grain-boundary structure is largely reconstructed and forms a dense packing of icosahedral clusters in its core. Combining with the detailed theoretical calculations, the Σ9 grain-boundary atomic structure is discovered to be incommensurate with the adjacent crystal structures. The present findings shed new light on the study of stable grain-boundary atomic structures in crystalline materials.

13.
Sci Adv ; 9(31): eadf6865, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531431

RESUMO

Zeolites are used in industries as catalysts, ion exchangers, and molecular sieves because of their unique porous atomic structures. However, direct observation of zeolitic local atomic structures via electron microscopy is difficult owing to low electron irradiation resistance. Subsequently, their fundamental structure-property relationships remain unclear. A low-electron-dose imaging technique, optimum bright-field scanning transmission electron microscopy (OBF STEM), has recently been developed. It reconstructs images with a high signal-to-noise ratio and a dose efficiency approximately two orders of magnitude higher than that of conventional methods. Here, we performed low-dose atomic-resolution OBF STEM observations of two types of zeolite, effectively visualizing all atomic sites in their frameworks. In addition, we visualized the complex local atomic structure of the twin boundaries in a faujasite (FAU)-type zeolite and Na+ ions with low occupancy in eight-membered rings in a Na-Linde Type A (LTA) zeolite. The results of this study facilitate the characterization of local atomic structures in many electron beam-sensitive materials.

14.
Microsc Microanal ; 29(Supplement_1): 1372-1373, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613821
15.
Proc Natl Acad Sci U S A ; 120(27): e2304498120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364121

RESUMO

The attainment of both high strength and toughness is the ultimate goal for most structural materials. Although ceramic material has been considered for use as a structural material due to its high strength and good chemical stability, it suffers from the limitation of low toughness. For instance, although Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZPs) exhibit remarkable toughness among ceramics due to their phase transformation toughening mechanism, this toughness is still much weaker than that of metals. Here, we report Y-TZP-based ceramic materials with toughnesses exceeding 20 MPa m1/2, which is comparable to those of metals, while maintaining strengths over 1,200 MPa. The superior mechanical properties are realized by reducing the phase stability of tetragonal zirconia by tailoring the microstructure and chemistry of the Y-TZP. The proposed ceramic materials can further advance the design and application of ceramic-based structural materials.

16.
Nat Nanotechnol ; 18(5): 521-528, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941362

RESUMO

Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al0.81In0.19N interface and pseudomorphic GaN/Al0.88In0.12N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.

17.
Microscopy (Oxf) ; 72(2): 78-96, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36094805

RESUMO

With the invention of the aberration corrector in electron optics, the spatial resolution in electron microscopy has progressively improved and has now reached the sub-50-pm regime, and atomic-resolution electron microscopy has become a versatile tool for investigating the atomic structures in materials and devices. Furthermore, the phase resolution in electron microscopy also exhibits outstanding progress, and it has become possible to visualize electromagnetic fields at atomic dimensions, which strongly contributes to understanding the physical and chemical properties of materials. The electron microscopy society has grown with the improvements in spatial and phase resolutions, and hence, we must continuously develop new hardware, software and methodologies to boost these resolutions. Here, we review the historical progress of spatial and phase resolutions in electron microscopy, where we clarify the definition of these resolutions. We also discuss the future targets in electron microscopy.

18.
Nat Commun ; 13(1): 5299, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109492

RESUMO

Impurity doping is a conventional but one of the most effective ways to control the functional properties of materials. In insulating materials, the dopant solubility limit is considerably low in general, and the dopants often segregate to grain boundaries (GBs) in polycrystals, which significantly alter their entire properties. However, detailed mechanisms on how dopant atoms form structures at GBs and change their properties remain a matter of conjecture. Here, we show GB structural transformation in α-Al2O3 induced by co-segregation of Ca and Si aliovalent dopants using atomic-resolution scanning transmission electron microscopy combined with density functional theory calculations. To accommodate large-sized Ca ions at the GB core, the pristine GB atomic structure is transformed into a new GB structure with larger free volumes. Moreover, the Si and Ca dopants form a chemically ordered structure, and the charge compensation is achieved within the narrow GB core region rather than forming broader space charge layers. Our findings give an insight into GB engineering by utilizing aliovalent co-segregation.

19.
Ultramicroscopy ; 240: 113580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908324

RESUMO

We propose a linear imaging theory for differential phase contrast under the weak-phase-weak-amplitude object approximation. Contrast transfer functions are defined for thin and thick weak objects, and they successfully describe several imaging characteristics of differential phase contrast. We discuss the defocus dependence of the contrast for several examples: atomic resolution, a p-n junction, a heterointerface, and grain boundaries. Understanding the imaging characteristics helps in adjusting aberrations in DPC STEM.

20.
Nano Lett ; 22(13): 5516-5522, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35696717

RESUMO

Lithium lanthanum titanate La2/3-xLi3xTiO3 (LLTO) has the potential to exhibit the highest Li-ion conductivity among oxide-based electrolytes because of the fast Li-ion diffusion derived from its crystal structure. Herein, bulk Li-ion conductivity of up to σbulk = 4.0 × 10-3 S/cm at 300 K, which is approximately three to four times higher than that of LLTO polycrystals, was demonstrated using LLTO single crystals, and their dependence on crystal domain orientation was examined. A change in the activation energy, which was previously obscured because of random crystal orientation, was observed at approximately 260 K. Furthermore, electron microscopy analysis indicated that the ionic conductivity of LLTOs remained higher because the region with the highest ionic conductivity was tilted away from the ideal conduction orientation. The results reported herein provide the highest conductivity in LLTO and important insights into their crystal structures, enabling higher conductivity in novel oxide-based electrolyte design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...