Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983746

RESUMO

Orofacial pain (OFP) is a dental specialty that includes the diagnosis, management and treatment of disorders of the jaw, mouth, face, head and neck. Evidence-based understanding is critical in effectively treating OFPs as the pathophysiology of these conditions is multifactorial. Since OFP impacts the quality of life of the affected individuals, treating patients successfully is of the utmost significance. Despite the therapeutic choices available, treating OFP is still quite challenging, owing to inter-patient variations. The emerging trends in precision medicine could probably lead us to a paradigm shift in effectively managing the untreatable long-standing pain conditions. Precision medicine is designed based on the patient's genetic profile to meet their needs. Several significant relationships have been discovered based on the genetics and genomics of pain in the past, and some of the notable targets are discussed in this review. The scope of this review is to discuss preclinical and clinical trials that include approaches used in targeted therapy for orofacial pain. Future developments in pain medicine should benefit from current trends in research into novel therapeutic approaches.

2.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682555

RESUMO

Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat's post-intervention pain response. In the von Frey's test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain.


Assuntos
Neuralgia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Biopterinas/análogos & derivados , Carbamazepina/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , ortoaminobenzoatos
3.
Brain Behav Immun ; 99: 266-280, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715301

RESUMO

Orofacial neuropathic pain can cause considerable disruptions in patients' daily lives, especially because of a lack of effective medications as its underlying causative mechanisms are not fully understood. Here, we found neuron-specific expression of the interleukin (IL)-33 receptor in the trigeminal spinal subnucleus caudalis (Vc), distinct from the spinal dorsal horn. Reduction in head withdrawal threshold in response to von Frey filament stimulation of the whisker pad skin was inversely correlated with the upregulation of IL-33 in the Vc after infraorbital nerve injury (IONI). Neutralization of IL-33 in the Vc alleviated mechanical allodynia in the whisker pad skin after IONI; conversely, intracisternal administration of IL-33 elicited mechanical allodynia in the whisker pad skin, which was relieved by GluN2B antagonism. Moreover, IL-33 triggered the potentiation of GluN2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents and phosphorylation of synaptosomal GluN2B in the Vc, whereas IONI-induced GluN2B phosphorylation was inhibited by neutralization of IL-33 in the Vc. IL-33-induced GluN2B phosphorylation was mediated by phosphorylation of Fyn kinase, and inhibition of the Fyn kinase pathway prevented the development of IL-33-induced mechanical allodynia. Our findings provide insights into a new mechanism by which IL-33 directly regulates synaptic transmission and suggest that IL-33 signaling could be a candidate target for therapeutic interventions for orofacial neuropathic pain.


Assuntos
Neuralgia , Receptores de N-Metil-D-Aspartato , Animais , Hiperalgesia/metabolismo , Interleucina-33/metabolismo , Neuralgia/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Toxins (Basel) ; 13(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678997

RESUMO

Peripheral nerve injury leads to sensory ganglion hyperexcitation, which increases neurotransmitter release and neuropathic pain. Botulinum toxin type A (BoNT/A) regulates pain transmission by reducing neurotransmitter release, thereby attenuating neuropathic pain. Despite multiple studies on the use of BoNT/A for managing neuropathic pain in the orofacial region, its exact mechanism of transport remains unclear. In this study, we investigated the effects of BoNT/A in managing neuropathic pain in two different animal models and its transport mechanism in the trigeminal nerve. Intraperitoneal administration of cisplatin induced bilateral neuropathic pain in the orofacial region, reducing the head withdrawal threshold to mechanical stimulation. Unilateral infraorbital nerve constriction (IONC) also reduced the ipsilateral head withdrawal threshold to mechanical stimulation. Unilateral peripheral administration of BoNT/A to the rat whisker pad attenuated cisplatin-induced pain behavior bilaterally. Furthermore, contralateral peripheral administration of BoNT/A attenuated neuropathy-induced behavior caused by IONC. We also noted the presence of BoNT/A in the blood using the mouse bioassay. In addition, the Alexa Fluor-488-labeled C-terminal half of the heavy chain of BoNT/A (BoNT/A-Hc) was localized in the neurons of the bilateral trigeminal ganglia following its unilateral administration. These findings suggest that axonal and hematogenous transport are involved in the therapeutic effects of peripherally administered BoNT/A in the orofacial region.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Neuralgia/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/prevenção & controle , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114176

RESUMO

Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.


Assuntos
Envelhecimento/imunologia , Dor Facial/imunologia , Interleucina-10/metabolismo , Microglia/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD11/metabolismo , Modelos Animais de Doenças , Dor Facial/etiologia , Masculino , Camundongos , Fenótipo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235682

RESUMO

We evaluated the mechanisms underlying the spinal cord stimulation (SCS)-induced analgesic effect on neuropathic pain following spared nerve injury (SNI). On day 3 after SNI, SCS was performed for 6 h by using electrodes paraspinally placed on the L4-S1 spinal cord. The effects of SCS and intraperitoneal minocycline administration on plantar mechanical sensitivity, microglial activation, and neuronal excitability in the L4 dorsal horn were assessed on day 3 after SNI. The somatosensory cortical responses to electrical stimulation of the hind paw on day 3 following SNI were examined by using in vivo optical imaging with a voltage-sensitive dye. On day 3 after SNI, plantar mechanical hypersensitivity and enhanced microglial activation were suppressed by minocycline or SCS, and L4 dorsal horn nociceptive neuronal hyperexcitability was suppressed by SCS. In vivo optical imaging also revealed that electrical stimulation of the hind paw-activated areas in the somatosensory cortex was decreased by SCS. The present findings suggest that SCS could suppress plantar SNI-induced neuropathic pain via inhibition of microglial activation in the L4 dorsal horn, which is involved in spinal neuronal hyperexcitability. SCS is likely to be a potential alternative and complementary medicine therapy to alleviate neuropathic pain following nerve injury.


Assuntos
Microglia/patologia , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/lesões , Estimulação da Medula Espinal , Animais , Masculino , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Estimulação da Medula Espinal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...