Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 738
Filtrar
1.
Adv Sci (Weinh) ; : e2402872, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946604

RESUMO

In an era marked by increasing environmental challenges affecting human well-being, traditional acoustic materials struggle to effectively handle the diverse and multi-frequency nature of harmful environmental noises. This has spurred a demand for innovative acoustic metamaterial solutions by utilizing sustainable design strategies. This research introduces tunable Schwarz metamaterial capable of transforming into a soft meta-foam to solve the complex problems of varying environmental noises. This study primarily focuses on adjusting single to multiple sound-blocking bandgaps mechanism using a multi-layered approach, incorporating the Schwarz P-type triply periodic minimal surface (TPMS) and its elective soft foam counterpart, known as tunable Schwarz meta-foams (TSMF-x). The tunable design parameters of the unit cell, multi-layered TPMS, and soft programmable TSMF-lichen version are comprehensively explored including a fire-safety test. The results demonstrate these enhanced flame retardant meta-foam families have the potential to be used for mid-to-high-frequency environmental noises in industrial equipment and smart homes for sustainable architecture and environmental health applications.

2.
J Econ Entomol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941232

RESUMO

The box tree moth (BTM), Cydalima perspectalis Walker, is a pest that infests various plants within the Buxus genus. Although a specific parasitoid wasp species associated with the BTM has been observed in the Republic of Korea, no research on this species has been published. Here, we describe the fundamental morphological and biological characteristics of this parasitoid. We have identified the wasp as belonging to the genus Eriborus (Hymenoptera: Ichneumonidae: Campopleginae). Eriborus sp. parasitizes within the living host body, with 1 wasp emerging from each host. The parasitism rate observed in collected BTM populations was 33.1%. The emergence rate was 87.1%, with all emerging adults being females, resulting in a sex ratio of 0. The pupal period avg 9.5 days, and the adult lifespan avg 10.5 days. Eriborus sp. parasitized BTM larvae from the first to the fourth instar and reproduced by thelytokous parthenogenesis. Eriborus sp. exhibited morphological differences compared with previously reported Eriborus species in Korea, particularly in the length of the ovipositor sheath. Additionally, the proportion of the highest similarity in nucleotide sequences of mitochondrial cytochrome oxidase I DNA was only 94.53%, rendering species identification using GenBank's mt cytochrome c oxidase 1 DNA sequences unfeasible. These data suggest that Eriborus sp. could be used as a biological control agent for managing BTM infestations.

3.
Biosens Bioelectron ; 260: 116419, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830292

RESUMO

Microbatteries are emerging as a sustainable, miniaturized power source, crucial for implantable biomedical devices. Their significance lies in offering high energy density, longevity, and rechargeability, facilitating uninterrupted health monitoring and treatment within the body. The review delves into the development of microbatteries, emphasizing their miniaturization and biocompatibility, crucial for long-term, safe in-vivo use. It examines cutting-edge manufacturing techniques like physical and chemical vapor deposition, and atomic layer deposition, essential for the precision manufacture of the microbatteries. The paper contrasts primary and secondary batteries, highlighting the advantages of zinc-ion and magnesium-ion batteries for enhanced stability and reduced reactivity. It also explores biodegradable batteries, potentially obviating the need for surgical extraction post-use. The integration of microbatteries into diagnostic and therapeutic devices is also discussed, illustrating how they enhance the efficacy and sustainability of implantable biosensors and bioelectronics.


Assuntos
Técnicas Biossensoriais , Fontes de Energia Elétrica , Próteses e Implantes , Técnicas Biossensoriais/instrumentação , Humanos , Desenho de Equipamento , Miniaturização , Animais
4.
Infect Drug Resist ; 17: 1633-1641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707988

RESUMO

Background: Clinical isolates of Acinetobacter species in South Korea are continuously exhibiting high rates of antimicrobial resistance to carbapenems, indicating that there are public health concerns among both healthcare-associated infections and community-associated infections. The aim of this study was to describe the prevalence and characteristics of carbapenem-resistant Acinetobacter isolates originating from community hospitals. Materials and Methods: A total of 817 non-duplicated Acinetobacter species were isolated from December 2022 to July 2023 at long-term care facilities and general hospitals in 16 regions geographically distributed throughout South Korea. Bacterial identification and antimicrobial susceptibility testing were performed using the VITEK-2 system. The bacteria were identified as Acinetobacter baumannii by blaOXA-51 PCR and as non-baumannii Acinetobacter species by rpoB sequence analysis. The carbapenem resistance genes (OXA-23, OXA-48, OXA-58, IMP, VIM, NDM, GES, and KPC) were identified via PCR and sequencing. The genetic relatedness of carbapenem-resistant A. baumannii (CRAB) isolates was assessed by multilocus sequence typing. Results: A total of 659 A. baumannii and 158 non-baumannii Acinetobacter isolates, comprising 19 different species, were identified in all 16 regions. The carbapenem resistance rate was 87.4% (n=576) for the A. baumannii isolates, and all the strains produced blaOXA-23. For non-baumannii Acinetobacter, the rate of carbapenem resistance was 8.9% (n=14); this resistance was primarily caused by blaOXA-23 (n=9), followed by blaNDM-1 (n=3) and blaVIM-2 (n=2). Of the 576 CRAB isolates, clonal complex 92 (CC92) was the predominant genotypes, followed by sequence type 229 (ST229), ST373, ST397, ST447, and ST620. Conclusion: Our results showed the distribution of Acinetobacter species and showed that CC92 CRAB clinical isolates with widespread production of blaOXA-23 were predominant in community hospitals. Our findings suggest that there is a need for urgent and effective methods to reduce carbapenem resistance in A. baumannii in South Korea.

5.
Adv Mater ; 36(26): e2312340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578242

RESUMO

The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m2 g-1 and a saturated magnetization of 142.7 Am2 kg-1. The size of the PCS can be controlled through the Ostwald ripening mechanism, while the porous structure can be regulated by adjusting the metal-to-ligand mol ratio. Its exceptional compatibility with poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) enables the creation of uniform electrode, crucial for producing soft actuators that work in both magnetic and electrical fields. Operated at an ultralow voltage of 1 V, the PCS-based actuator generates a blocking force of 47.5 mN and exhibits significant bending deflection even at an oscillation frequency of 10 Hz. Employing this simultaneous multimodal actuation ensures the dynamic and complex motions of a balancing bird robot and a dynamic eagle robot. This advancement marks a significant step toward the realization of more dynamic and versatile soft robotic systems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38684057

RESUMO

MXenes are highly versatile and conductive 2D materials that can significantly enhance the triboelectric properties of polymer nanocomposites. Despite the growing interest in the tunable chemistry of MXenes for energy applications, the effect of their chemical composition on triboelectric power generation has yet to be thoroughly studied. Here, we investigate the impact of the chemical composition of MXenes, specifically the Ti3CNTx carbonitride vs the most studied carbide, Ti3C2Tx, on their interactions with sodium alginate biopolymer and, ultimately, the performance of a triboelectric nanogenerator (TENG) device. Our results show that adding 2 wt % of Ti3CNTx to alginate produces a synergistic effect that generates a higher triboelectric output than the Ti3C2Tx system. Spectroscopic analyses suggest that a higher oxygen and fluorine content on the surface of Ti3CNTx enhances hydrogen bonding with the alginate matrix, thereby increasing the surface charge density of the alginate oxygen atoms. This was further supported by Kelvin probe force microscopy, which revealed a more negative surface potential on Ti3CNTx-alginate, facilitating high charge transfer between the TENG electrodes. The optimized Ti3CNTx-alginate nanogenerator delivered an output of 670 V, 15 µA, and 0.28 W/m2. Additionally, we demonstrate that plasma oxidation of the MXene surface further enhances triboelectric performance. Due to the diverse surface terminations of MXene, we show that Ti3CNTx-alginate can function as either tribopositive or tribonegative material, depending on the counter-contacting material. Our findings provide a deeper understanding of how MXene composition affects their interaction with biopolymers and resulting tunable triboelectrification behavior. This opens up new avenues for developing flexible and efficient MXene-based TENG devices.

7.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675559

RESUMO

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Assuntos
Apoptose , Osteoblastos , Osteoclastos , Ligante RANK , Rodófitas , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Etanol/química , Peróxido de Hidrogênio/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Rodófitas/química
8.
Adv Sci (Weinh) ; 11(14): e2307656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286669

RESUMO

Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs. The JCMS is produced asymmetrically through gravitational sedimentation, employing spherical CoMOFs within a diluted SEBS solution. Beyond its dual dielectric characteristics, the JCMS showcases exceptional mechanical durability, displaying notable stretchability of up to 475% and remarkable resilience when subjected to diverse mechanical pressures. Consequently, the JCMS-TENG produces a maximum peak-to-peak voltage of 936 V, a current of 42.8 µA, and a power density of 10.89 W m- 2 when exposed to an external force of 10 N at a 5 Hz frequency. This investigation highlights the potential of JCMS-TENGs with unique structures, known for their exceptional energy harvesting capabilities, mechanical strength, and flexibility. Additionally, the promising prospects of easily produced asymmetric structures is emphasized with bifunctionalities for developing efficient and flexible MOFs-based TENGs. These advancements are well-suited for self-powered wearables, rehabilitation devices, and energy harvesters.

9.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189606

RESUMO

Alkoxide precursors have been highlighted for depositing carbon-free films, but their use in Atomic Layer Deposition (ALD) often exhibits a non-saturated growth. This indicates no self-limiting growth due to the chain reaction of hydrolysis or ligand decomposition caused by ß-hydride elimination. In the previous study, we demonstrated that self-limiting growth of ALD can be achieved using our newly developed precursor, hafnium cyclopentadienyl tris(N-ethoxy-2,2-dimethyl propanamido) [HfCp(edpa)3]. To elucidate the growth mechanism and the role of cyclopentadienyl (Cp) ligand in a heteroleptic alkoxide precursor, herein, we compare homoleptic and heteroleptic Hf precursors consisting of N-ethoxy-2,2-dimethyl propanamido (edpa) ligands with and without cyclopentadienyl ligand-hafnium tetrakis(N-ethoxy-2,2-dimethyl propanamido) [Hf(edpa)4] and HfCp(edpa)3. We also investigate the role of a Cp ligand in growth characteristics. By substituting an alkoxide ligand with a Cp ligand, we could modify the surface reaction during ALD, preventing undesired reactions. The last remaining edpa after Hf(edpa)4 adsorption can undergo a hydride elimination reaction, resulting in surface O-H generation. In contrast, Cp remains after the HfCp(edpa)3 adsorption. Accordingly, we observe proper ALD growth with self-limiting properties. Thus, a comparative study of different ligands of the precursors can provide critical clues to the design of alkoxide precursors for obtaining typical ALD growth with a saturation behavior.

10.
Nat Commun ; 15(1): 435, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200009

RESUMO

Electro-active ionic soft actuators have been intensively investigated as an artificial muscle for soft robotics due to their large bending deformations at low voltages, small electric power consumption, superior energy density, high safety and biomimetic self-sensing actuation. However, their slow responses, poor durability and low bandwidth, mainly resulting from improper distribution of ionic conducting phase in polyelectrolyte membranes, hinder practical applications to real fields. We report a procedure to synthesize efficient polyelectrolyte membranes that have continuous conducting network suitable for electro-ionic artificial muscles. This functionally antagonistic solvent procedure makes amphiphilic Nafion molecules to assemble into micelles with ionic surfaces enclosing non-conducting cores. Especially, the ionic surfaces of these micelles combine together during casting process and form a continuous ionic conducting phase needed for high ionic conductivity, which boosts the performance of electro-ionic soft actuators by 10-time faster response and 36-time higher bending displacement. Furthermore, the developed muscle shows exceptional durability over 40 days under continuous actuation and broad bandwidth below 10 Hz, and is successfully applied to demonstrate an inchworm-mimetic soft robot and a kinetic tensegrity system.

11.
Int J Biol Macromol ; 255: 128103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992937

RESUMO

Corynebacterium glutamicum is an industrial workhorse applied in the production of valuable biochemicals. In the process of bio-based chemical production, improving cofactor recycling and mitigating cofactor imbalance are considered major solutions for enhancing the production yield and efficiency. Although, glyceraldehyde-3-phosphate dehydrogenase (GapDH), a glycolytic enzyme, can be a promising candidate for a sufficient NADPH cofactor supply, however, most microorganisms have only NAD-dependent GapDHs. In this study, we performed functional characterization and structure determination of novel NADPH-producing GapDH from C. glutamicum (CgGapX). Based on the crystal structure of CgGapX in complex with NADP cofactor, the unique structural features of CgGapX for NADP stabilization were elucidated. Also, N-terminal additional region (Auxiliary domain, AD) appears to have an effect on enzyme stabilization. In addition, through structure-guided enzyme engineering, we developed a CgGapX variant that exhibited 4.3-fold higher kcat, and 1.2-fold higher kcat/KM values when compared with wild-type. Furthermore, a bioinformatic analysis of 100 GapX-like enzymes from 97 microorganisms in the KEGG database revealed that the GapX-like enzymes possess a variety of AD, which seem to determine enzyme stability. Our findings are expected to provide valuable information for supplying NADPH cofactor pools in bio-based value-added chemical production.


Assuntos
Corynebacterium glutamicum , NADP/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise
12.
Sci Adv ; 9(50): eadk9752, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091394

RESUMO

Tailoring transfer dynamics of mobile cations across solid-state electrolyte-electrode interfaces is crucial for high-performance electrochemical soft actuators. In general, actuation performance is directly proportional to the affinity of cations and anions in the electrolyte for the opposite electrode surfaces under an applied field. Herein, to maximize electrochemical actuation, we report an electronically conjugated polysulfonated covalent organic framework (pS-COF) used as a common electrolyte-electrode host for 1-ethyl-3-methylimidazolium cation embedded into a Nafion membrane. The pS-COF-based electrochemical actuator exhibits remarkable bending deflection at near-zero voltage (~0.01 V) and previously unattainable blocking force, which is 34 times higher than its own weight. The ultrafast step response shows a very short rising time of 1.59 seconds without back-relaxation, and substantial ultralow-voltage actuation at higher frequencies up to 5.0 hertz demonstrates good application prospects of common electrolyte-electrode hosts. A soft fluidic switch is constructed using the proposed soft actuator as a potential engineering application.

13.
Parasite ; 30: 57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084938

RESUMO

The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is a destructive invasive woodboring insect pest, and efforts are being made to find parasitoids for ALB biological control. Through a four-year survey in Korea using a sentinel log trap associated with host chemical cues potentially important for host finding by parasitoids, two parasitoid species were discovered attacking ALB. One species is Spathius ibarakius Belokobylskij & Maetô, which is known to also parasitize citrus longhorned beetle, Anoplophora chinensis (Forster). The other parasitoid species, whose offspring were dead before imago, could not be morphologically identified at the adult stage. We attempted molecular and morphological identification of the larvae/pupae of the unidentified parasitoid; however, only superfamily-level identification was possible. The parasitism rate recovered in the logs was 0.3% by the unidentified parasitoid in Gapyeong-gun in 2019, while it reached 29.2% by S. ibarakius in Busan city in 2022. Future efforts for exploring ALB natural enemies in the pest's native range may focus on parasitoids with high parasitism rates.


Title: Exploration des parasitoïdes du longicorne asiatique en Corée à l'aide d'un piège à bûche sentinelle amélioré. Abstract: Le longicorne asiatique (LA), Anoplophora glabripennis (Motschulsky) (Coleoptera : Cerambycidae), est un insecte ravageur envahissant et destructeur du bois, et des efforts sont déployés pour trouver des parasitoïdes pour la lutte biologique contre lui. Au cours d'une étude de quatre ans en Corée utilisant un piège à bûche sentinelle associé à des signaux chimiques de l'hôte potentiellement importants pour la détection de l'hôte par les parasitoïdes, deux espèces de parasitoïdes ont été découvertes attaquant le longicorne. Une espèce est Spathius ibarakius Belokobylskij & Maetô, qui est connue pour parasiter également le longicorne des agrumes, Anoplophora chinensis (Forster). Les autres espèces de parasitoïdes, dont les descendants sont morts avant l'imago, n'ont pu être identifiées morphologiquement au stade adulte. Nous avons tenté une identification moléculaire et morphologique des larves/pupes du parasitoïde non identifié, mais seule une identification au niveau de la superfamille a été possible. Le taux de parasitisme observé dans les bûches était de 0,3 % par le parasitoïde non identifié à Gapyeong-gun en 2019, tandis qu'il atteignait 29,2 % par S. ibarakius dans la ville de Busan en 2022. Les efforts futurs pour explorer les ennemis naturels du capricorne dans l'aire de répartition naturelle du ravageur pourraient se concentrer sur les parasitoïdes à taux de parasitisme élevés.


Assuntos
Besouros , Himenópteros , Animais , Larva , República da Coreia
14.
Cells ; 12(24)2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38132172

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo/metabolismo , Osteócitos , Catepsina D/metabolismo , Proteômica , Células-Tronco Mesenquimais/metabolismo , Hipóxia/metabolismo , Adipocinas/metabolismo
15.
J Agric Food Chem ; 71(46): 17852-17859, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935620

RESUMO

Since the discovery of l-glutamate-producing Corynebacterium glutamicum, it has evolved to be an industrial workhorse. For biobased chemical production, suppling sufficient amounts of the NADPH cofactor is crucial. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that converts glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate and produces NADH, is a major prospective solution for the cofactor imbalance issue. In this study, we determined the crystal structure of GAPDH from C. glutamicum ATCC13032 (CgGAPDH). Based on the structural information, we generated six CgGAPDH variants, CgGAPDHL36S, CgGAPDHL36S/T37K, CgGAPDHL36S/T37K/P192S, CgGAPDHL36S/T37K/F100V/P192S, CgGAPDHL36S/T37K/F100L/P192S, and CgGAPDHL36S/T37K/F100I/P192S, that can produce both NADH and NAPDH. The final CgGAPDHL36S/T37K/F100V/P192S variant showed a 212-fold increase in enzyme activity for NADP as well as 200% and 30% increased activity for the G3P substrate under NAD and NADP cofactor conditions, respectively. In addition, crystal structures of CgGAPDH variants in complex with NAD(P) permit the elucidation of differences between wild-type CgGAPDH and variants in relation to cofactor stabilization.


Assuntos
Corynebacterium glutamicum , NAD , NADP/metabolismo , NAD/metabolismo , Corynebacterium glutamicum/metabolismo , Estudos Prospectivos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Engenharia de Proteínas
16.
Langmuir ; 39(44): 15785-15791, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37880817

RESUMO

Developing a new master mold-based patterning technology that can be used to accurately, precisely, and uniformly create large-area micropatterns while controlling the micropatterns of curved structures is essential for promoting innovative developments in various application fields. This study develops a new top-down lithographic process that can effectively produce structural patterns with high curvatures by growing isolated microbubbles in the master pattern holes. The isolated air-pocket lithography (IAL) we developed is based on the controlled behavior of micrometer-sized air pockets trapped between the grooves of the master pattern and the curable polymer. We successfully fabricated a concave array polydimethylsiloxane (PDMS) film and a convex array polymer film. In addition, the IAL mechanism was proven by confirming the expansion process of micrometer-sized air pockets trapped between the deep groove of the silicon master pattern and the PDMS coating film by using optical microscopy images. We successfully obtained complex three-dimensional structural patterns containing both 3D hollow spherical concave and ring-shaped two-dimensional convex patterns. This simple, fast, and effective high-curvature patterning technique is expected to provide innovative solutions for future applications such as nanoelectronics, optical devices, displays, and photovoltaics.

17.
J Agric Food Chem ; 71(42): 15692-15700, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846083

RESUMO

S-Adenosylmethionine (SAM) acts as a methyl donor in living organisms, and S-adenosylmethionine synthetase (MetK) is an essential enzyme for cells, as it synthesizes SAM from methionine and adenosine triphosphate (ATP). This study determined the crystal structures of the apo form and adenosine/triphosphate complex form of MetK from Corynebacterium glutamicum (CgMetK). Results showed that CgMetK has an allosteric inhibitor binding site for the SAM product in the vicinity of the active site and is inhibited by SAM both competitively and noncompetitively. Through structure-guided protein engineering, the CgMetKE68A variant was developed that exhibited an almost complete release of inhibition by SAM with rather enhanced enzyme activity. The crystal structure of the CgMetKE68A variant revealed that the formation of a new hydrogen bond between Tyr66 and Glu102 by the E68A mutation disrupted the allosteric SAM binding site and also improved the protein thermal stability by strengthening the tetramerization of the enzyme.


Assuntos
Corynebacterium glutamicum , Metionina Adenosiltransferase , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Trifosfato de Adenosina/metabolismo
18.
ACS Appl Mater Interfaces ; 15(36): 43087-43093, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656599

RESUMO

Resistive random-access memory (RRAM) is a promising technology for data storage and neuromorphic computing; however, cycle-to-cycle and device-to-device variability limits its widespread adoption and high-volume manufacturability. Improving the structural accuracy of RRAM devices during fabrication can reduce these variabilities by minimizing the filamentary randomness within a device. Here, we studied area-selective atomic layer deposition (AS-ALD) of the HfO2 dielectric for the fabrication of RRAM devices with higher reliability and accuracy. Without requiring photolithography, first we demonstrated ALD of HfO2 patterns uniformly and selectively on Pt bottom electrodes for RRAM but not on the underlying SiO2/Si substrate. RRAM devices fabricated using AS-ALD showed significantly narrower operating voltage range (2.6 × improvement) and resistance states than control devices without AS-ALD, improving the overall reliability of RRAM. Irrespective of device size (1 × 1, 2 × 2, and 5 × 5 µm2), we observed similar improvement, which is an inherent outcome of the AS-ALD technique. Our demonstration of AS-ALD for improved RRAM devices could further encourage the adoption of such techniques for other data storage technologies, including phase-change, magnetic, and ferroelectric RAM.

19.
Adv Mater ; 35(47): e2304442, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37724828

RESUMO

Wearable haptic interfaces prioritize user comfort, but also value the ability to provide diverse feedback patterns for immersive interactions with the virtual or augmented reality. Here, to provide both comfort and diverse tactile feedback, an easy-to-wear and multimodal wearable haptic auxetic fabric (WHAF) is prepared by knotting shape-memory alloy wires into an auxetic-structured fabric. This unique meta-design allows the WHAF to completely expand and contract in 3D, providing superior size-fitting and shape-fitting capabilities. Additionally, a microscale thin layer of Parylene is coated on the surface to create electrically separated zones within the WHAF, featuring zone-specified actuation for conveying diverse spatiotemporal information to users with using the WHAF alone. Depending on the body part it is worn on, the WHAF conveys either cutaneous or kinesthetic feedback, thus, working as a multimodal wearable haptic interface. As a result, when worn on the forearm, the WHAF intuitively provides spatiotemporal information to users during hands-free navigation and teleoperation in virtual reality, and when worn on the elbow, the WHAF guides users to reach the desired elbow flexion, like a personal exercise advisor.


Assuntos
Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Interface Háptica , Retroalimentação , Tecnologia Háptica , Desenho de Equipamento , Interface Usuário-Computador
20.
J Econ Entomol ; 116(6): 2014-2026, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774406

RESUMO

This study investigated the seasonal occurrence of bark and woodboring Coleoptera in Pinus densiflora (Pinales: Pinaceae), and Larix kaempferi (Pinales: Pinaceae) stands using multifunnel traps baited with pine volatiles in Korea. The number and species of bark and woodboring beetles caught in traps baited with ethanol, α-pinene, and ethanol+α-pinene were compared to determine the effective attractants. In addition, the effects of other pine volatiles, such as (-)-ß-pinene, ß-caryophyllene, (±)-limonene, ß-myrcene, and 3-carene, were investigated. A total of 13,134 woodboring beetles from 150 species were collected from pine and larch stands from 2019 to 2020. Tomicus minor (Hartig) (Coleoptera: Curculionidae) adults were more attracted to traps baited with α-pinene, whereas Xyleborinus saxesenii (Ratzeburg) (Coleoptera: Curculionidae), Cyclorhipidion pelliculosum (Eichhoff) (Coleoptera: Curculionidae), and Phloeosinus pulchellus (Blandford) (Coleoptera: Curculionidae) adults were more attracted to traps baited with ethanol. Hylurgops interstitialis (Chapuis) (Coleoptera: Curculionidae), Shirahoshizo genus group, Rhagium inquisitor (Linne) (Coleoptera: Cerambycidae), and Rhadinomerus maebarai (Voss & Chûjô) (Coleoptera: Curculionidae) were more frequently attracted to traps baited with ethanol+α-pinene than to traps baited with other attractants. The addition of 3-carene to ethanol+α-pinene enhanced the capture of H. interstitialis, R. inquisitor, and Hylobius (Callirus) haroldi (Faust) (Coleoptera: Curculionidae).


Assuntos
Besouros , Larix , Pinaceae , Pinus , Gorgulhos , Animais , Pinales , Casca de Planta , Estações do Ano , Etanol/farmacologia , Feromônios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...