Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-937689

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.

2.
Artigo | WPRIM (Pacífico Ocidental) | ID: wpr-835483

RESUMO

Lysophosphatidic acid (LPA) is a lipid messenger mediated by G protein-coupled receptors (LPAR1-6). It is involved in the pathogenesis of certain chronic inflammatory and autoimmune diseases. In addition, it controls the self-renewal and differentiation of stem cells. Recent research has demonstrated the close relationship between periodontitis and various diseases in the human body. However, the precise role of LPA in the development of periodontitis has not been studied. We identified that LPAR1 was highly expressed in human periodontal ligament stem cells (PDLSCs). In periodontitis-mimicking conditions with Porphyromonas gingivalis -derived lipopolysaccharide (Pg-LPS) treatment, PDLSCs exhibited a considerable reduction in the cellular viability and osteogenic differentiation potential, in addition to an increase in the inflammatory responses including tumor necrosis factor-α and interleukin-1β expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Of the various LPAR antagonists, pre-treatment with AM095, an LPAR1 inhibitor, showed a positive effect on the restoration of cellular viability and osteogenic differentiation, accompanied by a decrease in NF-κB signaling, and action against Pg-LPS. These findings suggest that the modulation of LPAR1 activity will assist in checking the progression of periodontitis and in its treatment.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-898690

RESUMO

Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to twodimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics ofdental pulp stem cells.

4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-890986

RESUMO

Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to twodimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics ofdental pulp stem cells.

5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-764048

RESUMO

Clear cell odontogenic carcinoma (CCOC), a very rare neoplasm located mostly in the mandible, has been regarded as a benign tumor. However, due to the accumulation of case reports, CCOC has been reclassified as a malignant entity by the World Health Organization. Patients with CCOC present with regional swelling and periodontal indications with variable pain, often remaining misdiagnosed for a long period. CCOC has slow growth but aggressive behavior, requiring radical resection. Histologic analysis revealed the monophasic, biphasic, and ameloblastic types of CCOC with clear cells and a mixed combination of polygonal and palisading cells. At the molecular level, CCOC shows the expression of cytokeratin and epithelial membrane antigen, along with markers that assign CCOC to the sarcoma family. At the genetic level, Ewing sarcoma breakpoint region 1-activating transcription factor 1 fusion is regarded as the key feature for identification. Nevertheless, the scarcity of cases and dependence on histological data delay the development of an efficient therapy. Regarding the high recurrence rate and the potential of distant metastasis, further characterization of CCOC is necessary for an early and accurate diagnosis.


Assuntos
Humanos , Ameloblastos , Diagnóstico , Queratinas , Mandíbula , Mucina-1 , Metástase Neoplásica , Tumores Odontogênicos , Recidiva , Sarcoma , Sarcoma de Ewing , Fatores de Transcrição , Organização Mundial da Saúde
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-740068

RESUMO

The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.


Assuntos
Humanos , Polpa Dentária , Odontologia , Células Endoteliais , Matriz Extracelular , Citometria de Fluxo , Imuno-Histoquímica , Células-Tronco Mesenquimais , Dente Molar , Organoides , Células-Tronco
7.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-158431

RESUMO

Embryonic stem (ES) cells are pluripotent cells characterized by self-renewability and differentiation potential. Induced pluripotent stem (iPS) cells are ES cell-equivalent cells derived from somatic cells by the introduction of core reprogramming factors. ES and iPS cells are important sources for understanding basic biology and for generating therapeutic cells for clinical applications. Tribbles homolog 2 (Trib2) functions as a scaffold in signaling pathways. However, the relevance of Trib2 to the pluripotency of ES and iPS cells is unknown. In the present study, we elucidated the importance of Trib2 in maintaining pluripotency in mouse ES cells and in generating iPS cells from somatic cells through the reprogramming process. Trib2 expression decreased as ES cells differentiated, and Trib2 knockdown in ES cells changed their colony morphology while reducing the activity of alkaline phosphatase and the expression of the pluripotency marker genes Oct4, Sox2, Nanog and Klf4. Trib2 directly interacted with Oct4 and elevated Oct4 promoter activity. During the generation of iPS cells, Trib2 knockdown decreased the reprogramming efficiency of mouse embryonic fibroblasts, whereas Trib2 overexpression significantly increased their reprogramming efficiency. In summary, our results suggest that Trib2 is important for maintaining self-renewal in ES cells and for pluripotency induction during the reprogramming process.


Assuntos
Animais , Camundongos , Fosfatase Alcalina , Biologia , Células-Tronco Embrionárias , Fibroblastos , Células-Tronco Pluripotentes Induzidas
8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-129214

RESUMO

Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.


Assuntos
Animais , Humanos , Camundongos , Fibroblastos , Células-Tronco Mesenquimais , Camundongos Knockout , Fosforilação , Receptores de Ácidos Lisofosfatídicos
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-129199

RESUMO

Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.


Assuntos
Animais , Humanos , Camundongos , Fibroblastos , Células-Tronco Mesenquimais , Camundongos Knockout , Fosforilação , Receptores de Ácidos Lisofosfatídicos
10.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-78635

RESUMO

Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients.


Assuntos
Humanos , Carcinogênese , Montagem e Desmontagem da Cromatina , Doxorrubicina , Resistência a Medicamentos , Xenoenxertos , Técnicas In Vitro , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Paclitaxel , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...