Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 15(41): e1902770, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448564

RESUMO

In this paper, electrostatically configurable 2D tungsten diselenide (WSe2 ) electronic devices are demonstrated. Utilizing a novel triple-gate design, a WSe2 device is able to operate as a tunneling field-effect transistor (TFET), a metal-oxide-semiconductor field-effect transistor (MOSFET) as well as a diode, by electrostatically tuning the channel doping to the desired profile. The implementation of scaled gate dielectric and gate electrode spacing enables higher band-to-band tunneling transmission with the best observed subthreshold swing (SS) among all reported homojunction TFETs on 2D materials. Self-consistent full-band atomistic quantum transport simulations quantitatively agree with electrical measurements of both the MOSFET and TFET and suggest that scaling gate oxide below 3 nm is necessary to achieve sub-60 mV dec-1 SS, while further improvement can be obtained by optimizing the spacers. Diode operation is also demonstrated with the best ideality factor of 1.5, owing to the enhanced electrostatic control compared to previous reports. This research sheds light on the potential of utilizing electrostatic doping scheme for low-power electronics and opens a path toward novel designs of field programmable mixed analog/digital circuitry for reconfigurable computing.

2.
ACS Nano ; 13(1): 377-385, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30563322

RESUMO

Band-to-band tunneling field-effect transistors (TFETs) have emerged as promising candidates for low-power integration circuits beyond conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) and have been demonstrated to overcome the thermionic limit, which results intrinsically in sub-threshold swings of at least 60 mV/dec at room temperature. Here, we demonstrate complementary TFETs based on few-layer black phosphorus, in which multiple top gates create electrostatic doping in the source and drain regions. By electrically tuning the doping types and levels in the source and drain regions, the device can be reconfigured to allow for TFET or MOSFET operation and can be tuned to be n-type or p-type. Owing to the proper choice of materials and careful engineering of device structures, record-high current densities have been achieved in 2D TFETs. Full-band atomistic quantum transport simulations of the fabricated devices agree quantitatively with the current-voltage measurements, which gives credibility to the promising simulation results of ultrascaled phosphorene TFETs. Using atomistic simulations, we project substantial improvements in the performance of the fabricated TFETs when channel thicknesses and oxide thicknesses are scaled down.

3.
Beilstein J Nanotechnol ; 9: 1075-1084, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719758

RESUMO

A detailed theoretical study of the optical absorption in doped self-assembled quantum dots is presented. A rigorous atomistic strain model as well as a sophisticated 20-band tight-binding model are used to ensure accurate prediction of the single particle states in these devices. We also show that for doped quantum dots, many-particle configuration interaction is also critical to accurately capture the optical transitions of the system. The sophisticated models presented in this work reproduce the experimental results for both undoped and doped quantum dot systems. The effects of alloy mole fraction of the strain controlling layer and quantum dot dimensions are discussed. Increasing the mole fraction of the strain controlling layer leads to a lower energy gap and a larger absorption wavelength. Surprisingly, the absorption wavelength is highly sensitive to the changes in the diameter, but almost insensitive to the changes in dot height. This behavior is explained by a detailed sensitivity analysis of different factors affecting the optical transition energy.

4.
Sci Rep ; 7(1): 12596, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974712

RESUMO

In this article, a novel two-path model is proposed to quantitatively explain sub-threshold characteristics of back-gated Schottky barrier FETs (SB-FETs) from 2D channel materials. The model integrates the "conventional" model for SB-FETs with the phenomenon of contact gating - an effect that significantly affects the carrier injection from the source electrode in back-gated field effect transistors. The two-path model is validated by a careful comparison with experimental characteristics obtained from a large number of back-gated WSe2 devices with various channel thicknesses. Our findings are believed to be of critical importance for the quantitative analysis of many three-terminal devices with ultrathin body channels.

5.
ACS Nano ; 11(3): 2785-2793, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28221762

RESUMO

Large-area two-dimensional (2D) heterojunctions are promising building blocks of 2D circuits. Understanding their intriguing electrostatics is pivotal but largely hindered by the lack of direct observations. Here graphene-WS2 heterojunctions are prepared over large areas using a seedless ambient-pressure chemical vapor deposition technique. Kelvin probe force microscopy, photoluminescence spectroscopy, and scanning tunneling microscopy characterize the doping in graphene-WS2 heterojunctions as-grown on sapphire and transferred to SiO2 with and without thermal annealing. Both p-n and n-n junctions are observed, and a flat-band condition (zero Schottky barrier height) is found for lightly n-doped WS2, promising low-resistance ohmic contacts. This indicates a more favorable band alignment for graphene-WS2 than has been predicted, likely explaining the low barriers observed in transport experiments on similar heterojunctions. Electrostatic modeling demonstrates that the large depletion width of the graphene-WS2 junction reflects the electrostatics of the one-dimensional junction between two-dimensional materials.

6.
Sci Rep ; 6: 31501, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538849

RESUMO

Scaling transistors' dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

7.
Sci Rep ; 6: 28515, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345020

RESUMO

2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m(*)) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0-0.4 eV, 2) light transport m(*) (0.15 m0), 3) anisotropic m(*) which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 10(6) for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs.

8.
Nano Lett ; 15(12): 8000-7, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26560813

RESUMO

Artificial semiconductors with manufactured band structures have opened up many new applications in the field of optoelectronics. The emerging two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs), cover a large range of bandgaps and have shown potential in high performance device applications. Interestingly, the ultrathin body and anisotropic material properties of the layered TMDs allow a wide range modification of their band structures by electric field, which is obviously desirable for many nanoelectronic and nanophotonic applications. Here, we demonstrate a continuous bandgap tuning in bilayer MoS2 using a dual-gated field-effect transistor (FET) and photoluminescence (PL) spectroscopy. Density functional theory (DFT) is employed to calculate the field dependent band structures, attributing the widely tunable bandgap to an interlayer direct bandgap transition. This unique electric field controlled spontaneous bandgap modulation approaching the limit of semiconductor-to-metal transition can open up a new field of not yet existing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...