Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30410792

RESUMO

Ultrasound that is widely used in medical diagnosis has drawn growing interests as a noninvasive means of neuromodulation. Focused pulsed ultrasound (FPUS) effectively modulates neural encoding and transmission in the peripheral nervous system (PNS) with unclear mechanism of action, which is further confounded by contradictory experimental outcomes from recordings of compound action potentials (CAP). To address that, we developed a novel in vitro set up to achieve simultaneous single-unit recordings from individual mouse sciatic nerve axon and systematically studied the neuromodulation effects of FPUS on individual axon. Unlike previous CAP recordings, our single-unit recordings afford superior spatial and temporal resolution to reveal the subtle but consistent effects of ultrasonic neuromodulation. Our results indicate that, 1) FPUS did not evoke action potentials directly in mouse sciatic nerve at all the tested intensities (spatial peak temporal average intensity, ISPTA of 0.91 to 28.2 W/cm2); 2) FPUS increases the nerve conduction velocity (CV) in both fast-conducting A- and slow-conducting C- type axons with effects more pronounced at increased stimulus duration and intensity; and 3) effects of increased CV is reversible and cannot be attributed to the change of local temperature. Our results support existing theories of non-thermal mechanisms underlying ultrasonic neuromodulation with low-intensity FPUS, including NICE, flexoelectricity, and solition models. This work also provides a solid experimental basis to further advance our mechanistic understandings of ultrasonic neuromodulation in the PNS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29568573

RESUMO

Electrode arrays interfacing with peripheral nerves are essential for neuromodulation devices targeting peripheral organs to relieve symptoms. To modulate (i.e., single-unit recording and stimulating) individual peripheral nerve axons remains a technical challenge. Here, we report an in vitro setup to allow simultaneous single-unit recordings from multiple mouse sciatic nerve axons. The sciatic nerve (~30 mm) was harvested and transferred to a tissue chamber, the ~5mm distal end pulled into an adjacent recording chamber filled with paraffin oil. A custom-built multi-wire electrode array was used to interface with split fine nerve filaments. Single-unit action potentials were evoked by electrical stimulation and recorded from 186 axons, of which 49.5% were classed A-type with conduction velocities (CV) greater than 1 m/s and 50.5% were C-type (CV < 1 m/s). The single-unit recordings had no apparent bias towards A- or C-type axons, were robust and repeatable for over 60 minutes, and thus an ideal opportunity to assess different neuromodulation strategies targeting peripheral nerves. For instance, ultrasonic modulation of action potential transmission was assessed using the setup, indicating increased nerve conduction velocity following ultrasound stimulus. This setup can also be used to objectively assess the design of next-generation electrode arrays interfacing with peripheral nerves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...