Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31594, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845934

RESUMO

This review delves into the world of mushroom oils, highlighting their production, composition, and versatile applications. Despite mushrooms' overall low lipid content, their fatty acid composition, rich in essential fatty acids like linoleic acid and oleic acid, proves nutritionally significant. Variations in fatty acid profiles across mushroom species and the prevalence of unsaturated fats contribute to their cardiovascular health benefits. The exploration extends to mushroom essential oils, revealing diverse volatile compounds through extraction methods like hydrodistillation and solvent-assisted flavor evaporation (SAFE). The identification of 1-octen-3-ol as a key contributor to the distinct "mushroom flavor" adds a nuanced perspective. The focus broadens to applications, encompassing culinary and industrial uses with techniques like cold pressing and supercritical fluid extraction (SFE). Mushroom oils, with their unique nutritional and flavor profiles, enhance gastronomic experiences. Non-food applications in cosmetics and biofuels underscore the oils' versatility. The nutritional composition, enriched with essential fatty acids, bioactive compositions, and trace elements, is explored for potential health benefits. Bioactive compounds such as phenolic compounds and terpenes contribute to antioxidant and anti-inflammatory properties, positioning mushroom oils as nutritional powerhouses. In short, this concise review synthesizes the intricate world of mushroom oils, emphasizing their nutritional significance, extraction methodologies, and potential health benefits. The comprehensive overview underscores mushroom oils as a promising area for further exploration and utilization. The characteristics of mushroom biomass oil for the use in various industries are influenced by the mushroom species, chemical composition, biochemical synthesis of mushroom, and downstream processes including extraction, purification and characterization. Therefore, further research and exploration need to be done to achieve a circular bioeconomy with the integration of SDGs, waste reduction, and economic stimulation, to fully utilize the benefits of mushroom, a valuable gift of nature.

2.
Toxics ; 12(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251015

RESUMO

The environmental conditions of a lake are influenced by its type and various environmental forces such as water temperature, nutrients content, and longitude and latitude to which it is exposed. Due to population growth and development limits, former mining lakes are being converted to more lucrative land uses like those of recreational zones, agriculture, and livestock. The fungus Ganoderma lucidum has the potential to be utilised as a substitute or to perform synergistic bacteria-coupled functions in efficient contaminated lake water treatment. The purpose of this paper is to evaluate the water quality and water quality index (WQI) of an ex-mining lake named Main Lake in the Paya Indah Wetland, Selangor. Furthermore, the current work simulates the use of a Malaysian fungus in decolourising the contaminated ex-mining lake by the BioDeF system in a 300 mL jar inoculated with 10% (v/v) of pre-grown Ganoderma lucidum pellets for 48 h. According to the results, the lake water is low in pH (5.49 ± 0.1 on average), of a highly intense dark brownish colour (average reading of 874.67 ± 3.7 TCU), and high in iron (Fe) content (3.2422 ± 0.2533 mg/L). The water quality index of the lake was between 54.59 and 57.44, with an average value of 56.45; thus, the water was categorized as Class III, i.e., under-polluted water, according to the Malaysian Department of Environment Water Quality Index (DOE-WQI, DOE 2020). The batch bioreactor BioDeF system significantly reduced more than 90% of the water's colour. The utilization of Ganoderma lucidum as an adsorbent material offers a variety of advantages, as it is easily available and cultivated, and it is not toxic.

3.
Bioengineered ; 14(1): 2262203, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791464

RESUMO

The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly (p < 0.05) while 2,4-dichlorophenoxy acetic acid (2,4-D) was deemed insignificant. To maximize the final yield of KCB and EPS, the final optimized variables are 50 g/L sucrose, 147.02 rpm, and 2 mg/L of NAA. To conclude, the optimized parameters for the cell suspension culture of kenaf callus serve as the blueprint for any sustainable large-scale production in the future and provide an alternative cultivating method to kenaf traditional farming.


The optimized cell cultivation for plant kenaf callus is 22 daysSucrose, agitation and NAA concentration stimulates the production of KCB and EPSHighest KCB and EPS was generated at 13.41 g/L and 1.86 g/L, respectivelyMaximum production blueprint for KCB and EPS require 50 g/L sucrose, 2 mg/L of NAA and 147.02 rpm.


Assuntos
Hibiscus , Biomassa , Técnicas de Cultura de Células , Sacarose , Acetatos
5.
Biology (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009834

RESUMO

Species invasion is a leading threat to marine ecosystems worldwide, being deemed as one of the ultimate jeopardies for biodiversity along with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are often considered as biological agents that control the spread of invasive species, and their effectiveness depends largely on factors that influence their feeding preferences, including the specific attributes of their food-the autotrophs. While the marine autotroph-herbivore interactions have been substantially discussed globally, many studies have reported contradictory findings on the effects of nutritional attributes and novelty of autotrophs on herbivore feeding behaviour. In view of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we generate a comprehensive review to furnish insights into critical knowledge gaps about the synergies based largely on the characteristics of macroalgae; an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also discuss the key defence strategies of these macroalgae against the herbivores, highlighting their unique attributes and plausible roles in keeping the marine ecosystems intact. Overall, the feeding behaviour of herbivores can be affected by the nutritional attributes, morphology, and novelty of the autotrophs. We recommend that future research should carefully consider different factors that can potentially affect the dynamics of the marine autotroph-herbivore interactions to resolve the inconsistent results of specific attributes and novelty of the organisms involved.

6.
Bioengineered ; 13(7-12): 14903-14935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37105672

RESUMO

Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.


Subject-based thematic review of fungal biomass usage and developmentPractical application of fungal biomass aligns with 3 Sustainable Development GoalsHigh performance is reported in medical, water management, buildings, and biofuel fieldsFungal biomass is the lucrative, essential, and future's way forward.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Humanos , Reatores Biológicos , Carboidratos , Biomassa , Fungos/metabolismo
7.
Sci Rep ; 11(1): 23079, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845290

RESUMO

Natural mycelial biomass (MB) and exopolysaccharides (EPS) of Malaysian tiger milk mushroom Lignosus rhinocerus are considered high-end components due to their high commercial potential value in drug discovery. This study aims to evaluate the toxicity of the mushroom extracts' generated in a bioreactor using the zebrafish embryo toxicity (ZFET) model assay as a new therapy for treating asthma. Both MB and EPS extracts, at concentrations 0.16-10 mg/mL, were tested for ZFET and early development effects on Zebrafish Embryos (ZE) during 24-120 h post-fertilisation (HPF). Findings revealed that MB was deemed safe with an LC50 of 0.77 mg/mL; the EPS were non-toxic (LC50 of 0.41 mg/mL). Neither MB nor EPS delayed hatching nor teratogenic defects in the treated ZE at a 2.5 mg/mL dose. There were no significant changes in the ZE heart rate after treatments with MB (130 beats/min) and EPS (140 beats/min), compared to that of normal ZE (120-180 beats/min). Mixing both natural compounds MB and EPS did not affect toxicity using ZFET testing; thus, intimating their safe future use as therapeutic interventions. This represents the first study to have used the ZFET assay on MB and EPS extracts of L. rhinocerus for future health applications.


Assuntos
Reatores Biológicos , Micélio/metabolismo , Polissacarídeos/química , Peixe-Zebra/embriologia , Animais , Biomassa , Biotecnologia , Química Farmacêutica/métodos , Biologia do Desenvolvimento , Dose Letal Mediana , Polyporaceae , Testes de Toxicidade
8.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562361

RESUMO

Natural mycelial exopolysaccharide (EPS) and endopolysaccharide (ENS) extracted from bioreactor-cultivated European Ganoderma applanatum mushrooms are of potential high commercial value for both food and adjacent biopharmaceutical industries. In order to evaluate their potential toxicity for aquaculture application, both EPS (0.01-10 mg/mL) and ENS (0.01-10 mg/mL) extracts were tested for Zebrafish Embryo Toxicity (ZFET); early development effects on Zebrafish Embryos (ZE) were also analyzed between 24 and 120 h post-fertilization (HPF). Both EPS and ENS are considered non-toxic with LC50 of 1.41 mg/mL and 0.87 mg/mL respectively. Both EPS and ENS did not delay hatching and teratogenic defect towards ZE with <1.0 mg/mL, respectively. No significant changes in the ZE heart rate were detected following treatment with the two compounds tested (EPS: 0.01-10 mg/mL: 176.44 ± 0.77 beats/min and ENS: 0.01-10 mg/mL: 148.44 ± 17.75 beats/min) compared to normal ZE (120-180 beats/min). These initial findings support future pre-clinical trials in adult fish models with view to safely using EPS and ENS as potential feed supplements for supplements for development of the aquaculture industry.


Assuntos
Reatores Biológicos/microbiologia , Embrião não Mamífero/citologia , Ganoderma/química , Micélio/química , Polissacarídeos/toxicidade , Testes de Toxicidade/métodos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Bioensaio , Embrião não Mamífero/efeitos dos fármacos , Europa (Continente)
9.
J Food Sci ; 85(10): 3124-3133, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860235

RESUMO

In a commercial oyster mushroom farm, from 300 g of the total harvest, only the cap and stem of the fruiting body parts are harvested (200 g) while the unused lower section called fruiting-body-base (FBB) is discarded (50 g). A new antioxidative FBB flour (FBBF) conversion to mixed-ratio chicken patty was recently developed which converts 16.67% of FBB into an edible flour. At the initial stage, pretreatments of FBBF were optimized at particle size (106 µm) and citric acid concentration (0.5 g/100 mL) to improve flour antioxidant responses. Such pretreatments boosted total phenolic content (2.31 ± 0.53 mg GAE/g) and DPPH (51.53 ± 1.51%) of pretreated FBBF. Mixed-ratio chicken patty containing FBBF (10%, 20%, 30%) significantly (P < 0.05) influenced the hardness, cohesiveness, springiness, and chewiness of the patties. However, only the hardness and chewiness increased proportionally with the increase FBBF in concentration. Notably, 60 panellists considered that 10% FBBF-chicken patty sensory attributes, including lightness, redness, and yellowness, is acceptable to consumers. This information could be used to market any type of commercial mushroom farm waste as alternative food products. PRACTICAL APPLICATION: This study shows that unused harvested mushroom waste from a local farm can be used to make an antioxidative chicken patty that is acceptable to consumer panellists. The converted mushroom waste into flour suggests that smaller particles and citric acid pretreatment can increase its nutritional value. This information can be used for waste conversion into new product development from any type of mushroom farm.


Assuntos
Farinha/análise , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Carpóforos/química , Produtos da Carne/análise , Pleurotus/química , Resíduos/análise , Animais , Galinhas , Cor , Humanos , Fenóis/análise , Paladar
10.
Food Sci Biotechnol ; 28(6): 1747-1757, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31807347

RESUMO

In submerged-liquid fermentation, seven key parameters were assessed using one-factor-at-a-time to obtain the highest GABA yield using an industrial soy sauce koji Aspergillus oryzae strain NSK (AOSNSK). AOSNSK generated maximum GABA at 30 °C (194 mg/L) and initial pH 5 (231 mg/L), thus was able to utilize sucrose (327 mg/L of GABA) for carbon source. Sucrose at 100 g/L, improved GABA production at 646 mg/L. Single nitrogen sources failed to improve GABA production, however a combination of yeast extract (YE) and glutamic acid (GA) improved GABA at 646.78 mg/L. Carbon-to-nitrogen ratio (C8:N3) produced the highest cell (24.01 g/L) and GABA at a minimal time of 216 h. The key parameters of 30 °C, initial pH 5, 100 g/L of sucrose, combination YE and GA, and C8:N3 generated the highest GABA (3278.31 mg/L) in a koji fermentation. AOSNSK promisingly showed for the development of a new GABA-rich soy sauce.

11.
AIMS Microbiol ; 5(1): 19-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384700

RESUMO

Wild-cultivated medicinal mushroom Ganoderma lucidum was morphologically identified and sequenced using phylogenetic software. In submerged-liquid fermentation (SLF), biomass, exopolysaccharide (EPS) and intracellular polysaccharide (IPS) production of the identified G. lucidum was optimised based on initial pH, starting glucose concentration and agitation rate parameters using response surface methodology (RSM). Molecularly, the G. lucidum strain QRS 5120 generated 637 base pairs, which was commensurate with related Ganoderma species. In RSM, by applying central composite design (CCD), a polynomial model was fitted to the experimental data and was found to be significant in all parameters investigated. The strongest effect (p < 0.0001) was observed for initial pH for biomass, EPS and IPS production, while agitation showed a significant value (p < 0.005) for biomass. By applying the optimized conditions, the model was validated and generated 5.12 g/L of biomass (initial pH 4.01, 32.09 g/L of glucose and 102 rpm), 2.49 g/L EPS (initial pH 4, 24.25 g/L of glucose and 110 rpm) and 1.52 g/L of IPS (and initial pH 4, 40.43 g/L of glucose, 103 rpm) in 500 mL shake flask fermentation. The optimized parameters can be upscaled for efficient biomass, EPS and IPS production using G. lucidum.

12.
Springerplus ; 5(1): 923, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386367

RESUMO

Conversion of glycerol from biodiesel production to glycerol carbonate was studied by esterification with dimethyl carbonate in a non-catalytic supercritical condition. It was found that in a non-catalytic supercritical condition, glycerol at higher purity gave higher yield of glycerol carbonate at 98 wt% after reaction at 300 °C/20-40 MPa/15 min. The yield of glycerol carbonate was observed to increase with molar ratio, temperature, pressure and time until a certain equilibrium limit. The existence of impurities such as water and remnants of alkaline catalyst in crude glycerol will direct the reaction to produce glycidol. Although impurities might not be desirable, the non-catalytic supercritical dimethyl carbonate could be an alternative method for conversion of glycerol from biodiesel production to value-added glycerol carbonate.Graphical abstractPlausible reaction scheme for conversion of glycerol to glycerol carbonate in non-catalytic supercritical dimethyl carbonate.

14.
Bioresour Technol ; 101(8): 2735-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19932022

RESUMO

This study reports on a novel two-step process for biodiesel production consisting of hydrolysis of oils in sub-critical water and subsequent supercritical dimethyl carbonate esterification. This process found to occur optimally at the sub-critical water treatment (270 degrees Celsius/27 MPa) for 25 min followed by a subsequent supercritical dimethyl carbonate treatment (300 degrees Celsius/9 MPa) for 15 min to achieve a comparably high yield of fatty acid methyl esters, at more than 97 wt%. In addition, the fatty acid methyl esters being produced satisfied the international standard specifications for use as biodiesel fuel. This new process for biodiesel production offers milder reaction condition (lower temperature and lower pressure), non-acidic, non-catalytic and applicable to feedstock with high amount of free fatty acids such as crude Jatropha curcas oil.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Formiatos/metabolismo , Jatropha/metabolismo , Óleos de Plantas/metabolismo , Hidrólise , Jatropha/química , Óleos de Plantas/química , Pressão , Sementes/química , Temperatura
15.
Bioresour Technol ; 100(5): 1793-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18990561

RESUMO

In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process.


Assuntos
Biotecnologia/métodos , Formiatos/química , Metanol/síntese química , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados , Óleos de Plantas/química , Óleo de Brassica napus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...