Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Res ; 60(Suppl 1): S107-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21777019

RESUMO

Since recently, it is possible, using noninvasive cortical stimulation, such as the protocol of paired associative stimulation (PAS), to induce the plastic changes in the motor cortex, in humans that mimic Hebb's model of learning. Application of TMS conjugated with peripheral electrical stimulation at strictly coherent temporal manner lead to convergence of inputs in the sensory-motor cortex, with the consequent synaptic potentiation or weakening, if applied repetitively. However, when optimal interstimulus interval (ISI) for induction of LTP-like effects is applied as a single pair, Motor evoked potential (MEP) amplitude inhibition is observed, the paradigm known as short-latency afferent inhibition (SLAI). Aiming to resolve this paradox, PAS protocols were applied, with 200 repetitions of TMS pulses paired with median nerve electrical stimulation, at ISI equal to individual latencies of evoked response of somatosensory cortex (N(20)) (PAS(LTP)), and at ISI of N(20) shortened for 5 msec (PAS(LTD)) - protocols that mimic LTP-like changes in the human motor cortex. MEP amplitudes before, during and after interventions were measured as an indicator based on output signals originating from the motor system. Post-intervention MEP amplitudes following the TMS protocols of PAS(LTP) and PAS(LTD) were facilitated and depressed, respectively, contrary to MEP amplitudes during intervention. During PAS(LTP) MEP amplitudes were significantly decreased in case of PAS(LTP), while in the case of PAS(LTD) an upward trend was observed. In conclusions, a possible explanation for the seemingly paradoxical effect of PAS can be found in the mechanism of homeostatic modulation of plasticity. Those findings indicate the existence of complex relationships in the development of plasticity induced by stimulation, depending on the level of the previous motor cortex excitability.


Assuntos
Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Plasticidade Neuronal , Estimulação Magnética Transcraniana , Adulto , Estimulação Elétrica , Eletromiografia , Potencial Evocado Motor , Potenciais Somatossensoriais Evocados , Feminino , Mãos , Homeostase , Humanos , Masculino , Nervo Mediano/fisiologia , Pessoa de Meia-Idade , Tempo de Reação , Limiar Sensorial , Sérvia , Fatores de Tempo , Adulto Jovem
2.
Physiol Res ; 60(Suppl 1): S101-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21777020

RESUMO

Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains dense anatomical interconnections with the cortical motor system. When a startling AS is delivered, prior to transcranial magnetic stimulation (TMS), the AS produces a suppression of motor evoked potential (MEP) amplitude in hand and arm muscles of healthy subjects. Here we analyzed the conditioning effect of a startling AS on MEP amplitude evoked by TMS to the primary motor leg area. Ten healthy volunteers participated in two experiments that used a conditioning-test paradigm. In the first experiment, a startling AS preceded a suprathreshold transcranial test stimulus. The interstimulus interval (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in the slightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating different mechanism of auditory-to-motor interactions at cortical and spinal level of motor system.


Assuntos
Córtex Cerebral/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Reflexo de Sobressalto , Nervos Espinhais/fisiologia , Estimulação Acústica , Adulto , Análise de Variância , Eletromiografia , Potencial Evocado Motor , Feminino , Alemanha , Reflexo H , Humanos , Extremidade Inferior , Masculino , Inibição Neural , Fatores de Tempo , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...