Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Mech Behav Biomed Mater ; 156: 106607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830315

RESUMO

OBJECTIVES: The aim of the study was to evaluate the influence of surface finishing in three polymer-based composits (composits) on the result of a 3-point bending test using quantitative and qualitative fractography as well as microstructural characteristics. MATERIALS AND METHODS: 270 rectangular specimens (n = 30) of three composits were prepared, stored and tested according to NIST No. 4877. Prior testing, the samples were subjected to three surface treatments: 1) no treatment, to preserve the oxygen inhibition layer, 2) with FEPA P1200 (ANSI equivalent grit 600) SiC paper abraded surface, and 3) polished surface. A three-point bending testing was employed, followed by quantitative (assessment of reason for failure and fracture pattern) and qualitative (fracture mirror measurements) fractography, 3D and 2D surface imaging, surface roughness, reliability and Fe-SEM analysis. The mirror radius that runs in the direction of constant stress was used to calculate the mirror constant (A) using Orr's equation. Uni- and multifactorial ANOVA, Tukey's post hoc test, and Weibull analysis was performed for statistical analysis. RESULTS: Surface finishing has less influence on the fracture pattern, reliability and mechanical parameters and has no influence on the mirror constant. The amount of inorganic filler has a direct impact on flexural strength and modulus, while the ranking of materials was independent of surface treatment. Failures initiated by volume defects were the most common failure mode (77.0%) with surface defects accounting for 14.9% (edge) and 7.7% (corner). Polishing resulted in lower peak-to valley height compared to no treatment, both 3-4 times lower compared to the 600 grit treatment. The increase in roughness within the analyzed range did not lead to an increase in surface-related failures. CONCLUSIONS: The clear dominance of volume defects in all examined materials as a cause of material fracture reduces the impact of roughness on the measured properties. This insight was only possible using qualitative and quantitative research fractography.


Assuntos
Teste de Materiais , Polímeros , Propriedades de Superfície , Polímeros/química , Testes Mecânicos , Estresse Mecânico , Materiais Dentários/química , Fenômenos Mecânicos
2.
Dent Mater ; 40(4): 593-607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365457

RESUMO

OBJECTIVES: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. METHODS: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens' morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. RESULTS: CaP-N consisted of rounded microparticles (200 nm - 1 µm) composed of 33 wt% hydroxyapatite and 67 wt% ß-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential ß-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. SIGNIFICANCE: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry.


Assuntos
Dentina , Hidroxiapatitas , Remineralização Dentária , Animais , Humanos , Dentina/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Esmalte Dentário , Cálcio/análise , Durapatita/farmacologia , Durapatita/química , Colágeno
3.
Bioengineering (Basel) ; 11(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38391645

RESUMO

In the chronology of polymer-based composite materials, flowable bulk-fill composites represent the most recent development. They enable a significant reduction in treatment time by being applied in larger increments of 4 to 5 mm. The aim of the investigation was to assess the polymerization quality and mechanical performance of a new formulation that has just entered the market and was still in experimental formulation at the time of the investigation, and to compare these results in the context of clinically established materials of the same category. Adequate curing in increments of up to 4 mm could be confirmed both by profiling the elastoplastic material behavior of large increments in 100 µm steps and by real-time assessment of the degree of conversion and the associated polymerization kinetic. A slightly lower amount of filler in the experimental material was associated with slightly lower hardness and elastic modulus parameters, but the creep was similar and the elastic and total indentation work was higher. The kinetic parameters were assigned to the specific characteristics of each tested material. The mechanical macroscopic strength, evaluated in a three-point bending test and supplemented by a reliability analysis, met or exceeded the standards and values measured in clinically established materials, which for all materials is related to the higher flexibility of the beams during testing, while the modulus of elasticity was low. The low elastic modulus of all flowable bulk-fill materials must be taken into account when deciding the clinical indication of this material category.

4.
Materials (Basel) ; 17(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276435

RESUMO

This study aims to quantify the influence of hue, value and opacity on the variation in light transmittance of a full color palette of an ormocer-based dental composite. Samples with a thickness of 2 mm were cured in real time while the incident irradiance and light transmittance were recorded with a spectrophotometer, either in real time during the polymerization or through the polymerized composite at different exposure distances. Across the entire shade range, light attenuation was high, varying between 70.3% and 92.1%. The light transmittance during polymerization increased exponentially with exposure time in all shades. The differences between the cured and uncured composites decrease with increasing value and with increasing opacity within a value. The pattern of variation in light transmittance with increasing value is non-linear and depends on the hue, but not on the opacity within a hue. Small variations in value in lighter shades of hue B reduce the transmitted light more than in hue A, while the opposite is true for darker shades. The results strongly suggest an adequate curing of the lower increments in larger restorations, as the additional light expected from curing the upper increments is very small, regardless of hue, value or opacity. An additional unfavorable condition by increasing the exposure distance consistently contributes to a reduction in light transmission and thus further supports the above statement.

5.
Dent Mater ; 40(2): 276-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993295

RESUMO

OBJECTIVES: The aim of the study was to develop new adhesive formulations that include natural polyphenols extracted from green tea (GTE), tricalcium phosphate (TCP) and chitosan to improve dentin bonding characteristics and cytotoxicity. METHODS: Four experimental adhesives were formulated under laboratory conditions. The groups differed in the integration of either GTE and/or TCP + chitosan. The four experimental and one clinically proven reference adhesive underwent shear bond testing after 24 h and 6 months of aging (n = 200) with subsequent fractographic analysis. Bond morphology was analyzed under a scanning electron microscope. The presence of phenolic compounds was validated by high performance liquid chromatography. Cytotoxicity was assessed by the WST-1 colorimetric assay on eluates up to 6 months. Statistical analysis was performed by one- and three-way ANOVA, Games-Howell and Tukey's post-hoc test as well as multiple students t-tests (α = 0.05). Weibull analysis was further conducted. RESULTS: The addition of GTE into the bonding agent did show immediate (p = 0.023, p = 0.013) and long-term (p < 0.001) effects on bond strength. After 24 h, GTE doped groups performed equal to the reference (p = 0.501, p = 0.270) and TCP and chitosan displayed improvements in reliability (m=4.0, m=4.3). Bond strength is retained after aging by adding GTE (p = 0.983). The additional presence of TCP and chitosan reduces it (p = 0.026). Excluding cohesive and mixed failures, the reference adhesive performed statistically equal to three of the four experimental groups. No long-term cytotoxic effects were shown. SIGNIFICANCE: The integration of GTE can enhance bond strength and a calcium source helps to improve immediate bond reliability.


Assuntos
Fosfatos de Cálcio , Quitosana , Colagem Dentária , Cimentos Dentários , Adesivos Dentinários/química , Cimentos de Resina/química , Polifenóis/farmacologia , Reprodutibilidade dos Testes , Dentina , Teste de Materiais , Resistência à Tração , Adesivos
6.
Materials (Basel) ; 16(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629945

RESUMO

This article reports the elastoplastic and viscoelastic response of an industrially cured CAD/CAM resin-based composite (Brilliant Crios, Coltene) at different scales, spatial locations, aging conditions, and shading. Mechanical tests were performed at the macroscopic scale to investigate material strength, elastic modulus, fracture mechanisms and reliability. An instrumented indentation test (IIT) was performed at the microscopic level in a quasi-static mode to assess the elastic and plastic deformation upon indentation, either by mapping transverse areas of the CAD/CAM block or at randomly selected locations. A dynamic-mechanical analysis was then carried out, in which chewing-relevant frequencies were included (0.5 to 5 Hz). Characteristics measured at the nano- and micro-scale were more discriminative in identifying the impact of variables as those measured at macro scale. Anisotropy as a function of the spatial location was identified in all shades, with gradual variation in properties from the center of the block to peripheral locations. Depending on the scale of observation, differences in shade and translucency are very small or not statistically significant. The aging effect is classified as low, but measurable on all scales, with the same pattern of variation occurring in all shades. Aging affects plastic deformation more than elastic deformation and affects elastic deformation more than viscous deformation.

7.
Materials (Basel) ; 16(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629957

RESUMO

To find an alternative that is closer to clinical reality in terms of cavity geometry and configuration factor, this study investigated the pushout test on in vitro adhesive testing to coronal dentin when compared to the established shear test, both in a standardized approach. For a feasible comparison between both tests, the pushout specimen was adjusted in thickness (1.03 ± 0.05 mm) and cavity diameter (1.42 ± 0.03 mm) to receive a bonding area (4.63 ± 0.26 mm2) that matches that of the shear test (4.57 ± 0.13 mm2). Though, the configuration factor between both tests differs largely (pushout 1.5 ± 0.08; shear bond 0.20 ± 0.01). The bond strength of five different adhesives (n = 20) was investigated for both tests. The pushout test registered a high number of invalid measurements (30%) due to concomitant dentin fracture during testing. In contrast to the shear test, the pushout test failed to discriminate between different adhesives (p = 0.367). Both tests differed largely from each other when comparing adhesive groups. When solely looking at the valid specimens, Weibull modulus reached higher values in the pushout approach. Conclusively, the pushout test in this specific setup does not distinguish as precisely as the shear bond test between different adhesives and needs adaption to be routinely applied in adhesive dentistry.

8.
Acta Biomater ; 168: 309-322, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479158

RESUMO

The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of the art methods are compared for investigating a dental filling including FTIR- and quantum cascade laser IR-imaging microscopy for the microscale and scattering-type scanning near-field optical microscopy for the nanoscale.


Assuntos
Microscopia , Qualidade de Vida , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microscopia/métodos , Espectrofotometria Infravermelho , Materiais Dentários , Teste de Materiais , Resinas Compostas/química
9.
J Mech Behav Biomed Mater ; 144: 105982, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352623

RESUMO

OBJECTIVES: The present study aimed to assess the applicability of Orr's equation on light-cured resin-based composites (RBCs) tested in 3- and 4-point bending tests, as well as assess the operator reliability of this method. METHODS: Fracture mirrors of 320 specimens (n = 320) made of four RBCs that had failed in the two tests were analyzed microscopically and consequently two radii of each specimen were measured by two operators, each measuring twice. The mirror constant A was calculated using Orr's equation. The results of the two operators were compared using a t-Test and further assessment of the data was performed using a MANOVA, Tukey's post hoc test and regression analysis. RESULTS: With the exception of 11 specimens, the measurement of the fracture mirror radii was carried out successfully. The calculation of the mirror constant proved successful with a high coefficient of determination (R2 > 0.98). The calculated mirror constants were operator-independent if the results of more than one measurement was taken into consideration. The ratio of the mirror constant A to the fracture toughness KIc lay between 2.1 and 2.4 for three of the four RBC. The fourth RBC had a ratio of 1.6 and was the only one where different mirror constants were observed as a function of the testing method. SIGNIFICANCE: The present study proves the applicability of brittle fracture mechanics on RBCs despite them often being regarded as not brittle due to their also plastic behavior.


Assuntos
Resinas Compostas , Materiais Dentários , Teste de Materiais , Reprodutibilidade dos Testes , Plásticos , Propriedades de Superfície
10.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241400

RESUMO

Modern light-cured, resin-based composites are offered in a wide range of shades and translucencies. This large variation, created by varying the amount and type of pigmentation and opacifiers, is essential to enable an esthetic restoration in each patient situation, but may affect light transmission in the deeper layers during curing. We quantified optical parameters and their real-time variation during curing for a 13-shade composite palette of identical chemical composition and microstructure. Incident irradiance and real-time light transmission through 2 mm thick samples were recorded to calculate absorbance, transmittance, and the kinetic of transmitted irradiance. Data were supplemented by the characterization of cellular toxicity to human gingival fibroblasts up to 3 months. The study highlights a strong dependence of light transmission and its kinetic as a function of shade, with the largest changes occurring within the first second of exposure; the faster changes, the darker and more opaque the material. Transmission differences within progressively darker shades of a pigmentation type (hue) followed a hue-specific, non-linear relationship. Shades with similar transmittance but belonging to different hues were identified, while the corresponding kinetic was identical only up to a transmittance threshold. A slight drop in absorbance was registered with increasing wavelength. None of the shades were cytotoxic.

11.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984023

RESUMO

Structural coloring of dental resin-based composites (RBC) is used to create universal chromatic materials designed to meet any aesthetic need, replacing the mixing and matching of multiple shades. The microstructural adjustments to create this desideratum involve nanoscale organic-inorganic core-shell structures with a particular arrangement. The generally higher polymer content associated with these structures compared to universal chromatic RBCs colored by pigments, which in their microstructure come close to regularly shaded RBCs, can influence the way the material ages. Accelerated and slow aging up to 1.2 years of immersion in artificial saliva at 37 °C were therefore compared in relation to their effects on the materials described above and in relation to the immersion conditions prescribed by standards. Quasi-static and viscoelastic parameters were assessed to quantify these effects by a depth-sensing indentation test equipped with a DMA module. The microstructure of the materials was characterized by scanning electron microscopy. The results convincingly show a differentiated influence of the aging protocol on the measured properties, which was more sensitively reflected in the viscoelastic behavior. Accelerated aging, previously associated with the clinical behavior of RBCs, shows a 2- to 10-fold greater effect compared to slow aging in artificial saliva of up to 1.2 years, highly dependent on the microstructure of the material.

12.
J Funct Biomater ; 14(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36976087

RESUMO

Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.

13.
Bioengineering (Basel) ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829729

RESUMO

The development of resin-based composites (RBCs) is a delicate balance of antagonistic properties with direct clinical implications. The clear trend toward reducing filler size in modern RBCs solves esthetic deficiencies but reduces mechanical properties due to lower filler content and increases susceptibility to degradation due to larger filler-matrix interface. We evaluated a range of nano- and nano-hybrid RBCs, along with materials attempting to address shrinkage stress issues by implementing an Ormocer matrix or pre-polymerized fillers, and materials aiming to provide caries-protective benefit by incorporating bioactive fillers. The cytotoxic response of human gingival fibroblast (HGF) cells after exposure to the RBC eluates, which were collected for up to six months, was analyzed using a WST-1 assay. The microstructural features were characterized using a scanning electron microscopy and were related to the macroscopic and microscopic mechanical behaviors. The elastic-plastic and viscoelastic material behaviors were evaluated at the macroscopic and microscopic levels. The data were supplemented with fractography, Weibull analysis, and aging behavioral analysis. The results indicate that all RBCs are non-cytotoxic at adequate exposure. The amount of inorganic filler affects the elastic modulus, while only to a limited extent the flexural strength, and is well below the theoretical estimates. The nanoparticles and the agglomeration of nanoparticles in the RBCs help generate good mechanical properties and excellent reliability, but they are more prone to deterioration with aging. The pre-polymerized fillers lower the initial mechanical properties but are less sensitive to aging. Only the Ormocer retains its damping ability after aging. The strength and modulus of elasticity on the one hand and the damping capacity on the other are mutually exclusive and indicate the direction in which the RBCs should be further developed.

14.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431581

RESUMO

A more-and-more-accepted alternative to the time-consuming and technique-sensitive, classic, incremental-layering technique of resin-based composites (RBCs) is their placement in large increments. The so-called bulk-fill RBCs had to be modified for a higher polymerization depth and already have a 20-year history behind them. From the initial simple mechanisms of increasing the depth of cure by increasing their translucency, bulk-fill RBCs have evolved into complex materials with novel polymerization mechanisms and bioactive properties. However, since the materials are intended to replace the tooth structure, they must be comparable in mechanical behavior to the substance they replace. The study compares already established bulk-fill RBCs with newer, less-studied materials and establishes their relationship to dentin with regard to basic material properties such as hardness and indentation modulus. Instrumented indentation testing enables a direct comparison of tooth and material substrates and provides clinically relevant information. The results underline the strong dependence of the measured properties on the amount of filler in contrast to the small influence of the material classes into which they are classified. The main difference of RBCs compared to dentin is a comparable hardness but a much lower indentation modulus, emphasizing further development potential.

15.
J Funct Biomater ; 13(4)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36412858

RESUMO

Computer aided design/manufacturing (CAD/CAM) technology has become an increasingly popular part of dentistry, which today also includes CAD/CAM resin-based composite (RBC) applications. Because CAD/CAM RBCs are much more difficult to bond, many methods and attachment materials are still being proposed, while the best application method is still a matter of debate. The present study therefore evaluates causal factors for a reliable long-term bond, which includes the surface preparation of the CAD/CAM RBC, aging and the type of luting material. The reliability of the bond was calculated, and supplemented by fractography to identify fracture mechanisms. Five categories of luting materials were used: (1) temporary zinc phosphate cement, (2) glass ionomer cement (GIC), (3) resin-modified GIC, (4) conventional adhesive resin cement (ARC), and (5) self-adhesive RC. Half of the CAD/CAM RBC surfaces (n = 200) were sandblasted (SB) with 50 µm aluminum oxide, while the other half remained untreated. Bond strength measurements of the 400 resulting specimens were carried out after 24 h (n = 200) or after additional aging (10,000 thermo-cycles between 5 and 55 °C) (n = 200). The data were statistically analyzed using one- and three-way ANOVA followed by Games-Howell post-hoc test (α = 0.05) and Weibull analysis. Aging resulted in a significant decrease in bond strength primarily for the conventional cements. The highest bond strengths and reliabilities were recorded for both ARCs. SB caused a significant increase in bond strength for most luting materials, but also caused microcracks in the CAD/CAM RBC. These microcracks might compromise the long-term reliability of the bond in vivo.

16.
J Dent ; 127: 104333, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257513

RESUMO

OBJECTIVES: The current study aimed to compare the efficacy of two in vitro microbiological models based on open and closed systems designed to obtain secondary caries in an accelerated and reproducible way. METHODS: A conventional resin-based composite (RBC - Majesty ES-2; Kuraray, Japan) and a resin-modified glass-ionomer cement (RMGIC - Ionolux; VOCO, Germany) were used to restore standardized class II cavities (n = 4/tooth, cervical margin in dentin) in 16 human molars. The ability to produce secondary caries with Streptococcus mutans biofilms was tested using either an open-cycle or closed-cycle bioreactor (n = 8 specimens/model). Specimens were scanned before and after the biofilm exposure using micro-CT (Skyscan 1176, 9 µm resolution, 80 kV, 300 mA). Image reconstruction was performed, and demineralization depths (µm) were evaluated at the restoration margins and a distance of 1.0 mm. RESULTS: Dentin demineralization could be observed in all specimens, and enamel demineralization in 50% of the specimens. The open system bioreactor produced lesions with significantly higher overall demineralization depths (p < .001). However, demineralization depths at a 1.0 mm distance from the restoration margins showed no difference between open and closed systems or materials. In the open system, significantly lower demineralization depths were observed in proximity to RMGIC than RBC (p < .001), which was not significantly different in the closed system (p = .382). CONCLUSIONS: Both systems produced in vitro secondary caries in an accelerated way. However, the open-cycle bioreactor system confirmed the caries-protective activity exerted by the RMGIC material in contrast to the RBC, better simulating materials' clinical behavior. CLINICAL SIGNIFICANCE: The possibility of obtaining accelerated and reproducible secondary caries development in vitro is fundamental in testing the behavior of conventional and yet-to-come restorative dental materials. Such systems can provide faster outcomes regarding the performance of dental restorative materials compared to clinical studies, notwithstanding the importance of the latter.


Assuntos
Cárie Dentária , Desmineralização do Dente , Humanos , Restauração Dentária Permanente/métodos , Desmineralização do Dente/microbiologia , Suscetibilidade à Cárie Dentária , Resinas Compostas , Cárie Dentária/microbiologia , Cimentos de Ionômeros de Vidro
17.
J Funct Biomater ; 13(4)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278647

RESUMO

One of the recent trends in the development of resin-based composites (RBCs) focuses on universal coloring to avoid time-consuming color matching and RBC layering for a clinically appropriate esthetic impact. We evaluated an experimental material for posterior restorations combining universal coloring with the possibility of bulk-fill placement. Clinically established materials were analyzed as a reference, including a bulk-fill and a universal chromatic RBC. Microstructural features were described using scanning electron microscopy and related to macroscopic and microscopic mechanical behavior. Standards to be met before market launch were supplemented by fractography, Weibull analysis, and aging behavior assessment. Quasi-static and viscoelastic behavior were evaluated on a microscopic scale, incorporating a large number of parameters and increasingly aggressive immersion media. All materials complied with the standard requirements even after aging. The latter had little impact on the measured parameters, except for strength. Strength, modulus of elasticity, and hardness parameters on the one hand and damping behavior on the other were mutually exclusive. Despite considerable differences in the microstructure and type of filler, an increased filler amount remained critical for better mechanical properties. The lower proportion of inorganic fillers was directly transferred to the elastic modulus values, which, in turn, restricts the experimental material in its clinical applications to smaller occlusal fillings.

18.
Bioengineering (Basel) ; 9(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35877321

RESUMO

Universal chromatic dental resin-based composites were recently developed in an attempt to speed up the restoration process with the aim of making it easier for the practitioner to decide on a suitable shade and to avoid time-consuming matching and mixing of materials. The way in which color is created in the analyzed universal chromatic materials is innovative, as it is not only induced by selective light absorption via pigments (Venus Diamond ONE, Venus Pearl ONE), as is usual in regular composites (Charisma Classic, Charisma Topaz, Venus, Venus Diamond), but also by selective light reflection via particularized microstructures (Omnichroma). Material properties were assessed at 24 h post-polymerization and after artificial aging. Flexural strength (n = 20) and modulus were measured in a 3-point-bending test and complemented with fractography and Weibull analysis. Quasi-static (Martens, Vickers, and indentation hardness; elastic and total indentation work; creep, indentation depth) and viscoelastic (storage, loss, and indentation moduli; loss factor) behavior (n = 6) was measured by a depth-sensing indentation test equipped with a DMA module. The nanoscale silica/zirconia polymer core-shell structure in the structural-colored material induces similar or poorer mechanical properties compared with pigment-colored materials, which is related to the higher polymer content. For all materials, aging shows a clear influence on the measured properties, with the degree of degradation depending on the measurement scale.

19.
J Mech Behav Biomed Mater ; 131: 105231, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35430520

RESUMO

OBJECTIVES: The aim of the study was to assess the applicability of the Weibull model for resin-based composites (RBC) to predict the outcome of different flexural tests based on one another, while identifying the minimal sample number for a precise Weibull representation. METHODS: Four RBCs underwent 3-point, 4-point and biaxial flexural testing (n = 480). Fracture surfaces of all specimens were assessed under optical microscope, while fracture modes of the uniaxial specimens were documented. Representative specimens for each fracture mode were further analyzed under scanning electron microscope. Since fracture predominantly originated from a surface flaw, the effective surface was used in the Weibull model. The analysis was performed on 20, then 30 and finally 40 specimens per group to assess the effect of the specimen size. Further statistical analysis was performed through uni- and multivariate ANOVA, Tukey's post hoc test (α = 0.05), and Pearson's correlation. RESULTS: The Weibull model could predict the results of uniaxial tests within the standard deviation, with the correlation between calculated and measured values reaching values of R2 = 0.985 and higher. Predictions for or based on the biaxial tests misestimated the measured values, with a weaker correlation (R2 = 0.875) between measured and calculated flexural strength (FS). The fit of the data to the Weibull distribution improved with rising sample size resulting in better predictions of the FS when n = 40. SIGNIFICANCE: The applicability of the Weibull model on RBCs allows accurate comparison between bending tests and their FS under consideration of the effective surface.


Assuntos
Resinas Compostas , Resistência à Flexão , Materiais Dentários , Teste de Materiais , Maleabilidade , Propriedades de Superfície
20.
J Biomed Mater Res B Appl Biomater ; 110(9): 2121-2132, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373907

RESUMO

The study aims to compare the way modern resin-based composites (RBCs) respond to mechanical stress related to the tooth structure they are designed to replace. Eight representative light-cured RBCs, including ormocers, giomers, RBCs with nano and agglomerated nanoparticles, prepolymerized, or compact fillers, were selected. Flexural strength, FS and modulus/E, were measured in a three-point bending test. A fractographic analysis determined the origin of fracture. The quasi-static (indentation hardness/HIT , indentation modulus/EIT ) and viscoelastic (storage modulus/E', loss modulus/E″, loss factor/tan δ) behavior was assessed by a depth-sensing indentation test equipped with a dynamic-mechanical analysis module. One and multiple-way analysis of variance (ANOVA), Tukey honestly significant difference (HSD) post-hoc tests (α = 0.05), and Weibull statistics were applied. Parameter material exhibited the highest effect on E (p < .001, ηP2  = .857), followed by FS (ηP2  = .729), and the strain (ηP2  = .553). Highest material reliability was identified in the RBCs with nano and agglomerated nanoparticles. The most frequent type of failure originated from volume (81.3%), followed by edge (10.6%), and corner (8.1%) flaws. Enamel evidenced three times higher HIT , EIT , and E' values as RBCs and dentin, and the smallest deviation from ideal elasticity. Ormocers exhibited the highest damping capacity, followed by the RBCs with prepolymerized fillers. Damping capacity and static mechanical properties are mutually exclusive. Analyzed RBCs and the tooth structure are better adapted to the relevant frequency for chewing than for higher frequencies. RBCs are comparable to dentin in terms of their mechanical performance, but apart from the damping behavior, they are far inferior to enamel. Damping ability of analyzed material could be exploited for correlation with the clinical behavior.


Assuntos
Resinas Compostas , Cura Luminosa de Adesivos Dentários , Resinas Compostas/química , Lâmpadas de Polimerização Dentária , Materiais Dentários , Módulo de Elasticidade , Dureza , Teste de Materiais , Metacrilatos/química , Cerâmicas Modificadas Organicamente , Maleabilidade , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...