Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8283, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427941

RESUMO

Using GPS-tracked individuals, we compared foraging ecology and reproductive output of a High-Arctic zooplanktivorous seabird, the little auk Alle alle, between three years differing in environmental conditions (sea surface temperature). Despite contrasting environmental conditions, average foraging fights distance and duration were generally similar in all studied years. Also, in all years foraging locations visited by the little auk parents during short trips (ST, for chick provisioning) were significantly closer to the colony compared to those visited during long trips (LTs, mainly for adults' self-maintenance). Nevertheless, we also found some differences in the little auk foraging behaviour: duration of LTs was the longest in the coldest year suggesting more time for resting for adults compared to warmer years. Besides, birds foraged closer to the colony and in significantly colder water in the coldest year. Interestingly, these differences did not affect chick diet: in all the years, the energy content of food loads was similar, with the Arctic copepod, Calanus glacialis copepodite stage V being the most preferred prey item (>73% of items by number and >67% by energy content). Also chick survival was similar in all the study years. However, when examining chicks growth rate we found that their peak body mass was lower in warmer years suggesting that overall conditions in the two warm years were less favourable. While our results, demonstrate a great foraging flexibility by little auks, they also point out their vulnerability to changing environmental conditions.

2.
Front Zool ; 15: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588648

RESUMO

BACKGROUND: Foraging strategies of seabird species often vary considerably between and within individuals. This variability is influenced by a multitude of factors including age, sex, stage of annual life cycle, reproductive status, individual specialization and environmental conditions. RESULTS: Using GPS-loggers, we investigated factors affecting foraging flight characteristics (total duration, maximal range, total distance covered) of great skuas Stercorarius skua of known sex breeding on Bjørnøya, Svalbard, the largest colony in the Barents Sea region. We examined influence of sex (females are larger than males), phase of breeding (incubation, chick-rearing), reproductive status (breeders, failed breeders) and bird ID (they are known for individual foraging specialization). Our analyses revealed that only bird ID affected foraging flight characteristics significantly, indicating a high degree of plasticity regardless of sex, reproductive status or phase of breeding. We recognized three main groups of individuals: 1) those preying mainly on other seabirds in the breeding colonies (6%), 2) those foraging at sea (76%) and kleptoparasiting other seabirds and/or foraging on fish and/or offal discarded by fishing vessels, and 3) those alternating between preying on other seabirds in breeding colonies and foraging at sea (18%). Despite marked size sexual dimorphism, we found no apparent sex differences in flight characteristics. Birds after egg- or chick-loss and thus not constrained as central foragers did not modify their foraging flights. CONCLUSIONS: Great skuas breeding on Bjørnøya displayed a high degree of plasticity regardless of sex, reproductive status or phase of breeding. We recognized groups of individuals regularly preying in the seabird colonies, foraging at sea, and alternating between both strategies. This suggests foraging specialization of some individuals.

3.
Sci Rep ; 7(1): 16203, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176574

RESUMO

Here, we model current and future distribution of a foraging Arctic endemic species, the little auk (Alle alle), a small zooplanktivorous Arctic seabird. We characterized environmental conditions [sea depth, sea surface temperature (SST), marginal sea ice zone (MIZ)] at foraging positions of GPS-tracked individuals from three breeding colonies in Svalbard: one located at the southern rim of the Arctic zone (hereafter 'boreo-Arctic') and two in the high-Arctic zone on Spitsbergen ('high-Arctic'). The birds from one 'high-Arctic' colony, influenced by cold Arctic water, foraged in the shallow shelf zone near the colony. The birds from remaining colonies foraged in a wider range of depths, in a higher SST zone ('boreo-Arctic') or in the productive but distant MIZ (second 'high-Arctic' colony). Given this flexible foraging behaviour, little auks may be temporarily resilient to moderate climate changes. However, our fuzzy logic models of future distribution under scenarios of 1 °C and 2 °C SST increase predict losses of suitable foraging habitat for the majority of little auk colonies studied. Over longer time scales negative consequences of global warming are inevitable. The actual response of little auks to future environmental conditions will depend on the range of their plasticity and pace of ecosystem changes.


Assuntos
Aclimatação , Charadriiformes/fisiologia , Ecossistema , Comportamento Alimentar , Animais , Regiões Árticas , Lógica Fuzzy
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...