Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(43): 48486-48494, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078614

RESUMO

Extended and oriented rutile nanowires (NWs) hold great promise for numerous applications because of their various tunable physicochemical properties in air and/or solution media, but their direct synthesis on a wide range of conducting substrates remains a significant challenge. Their device performance is governed by relevant NW geometries that cannot be fully controlled to date by varying bulk synthetic conditions. Herein, orientation engineering of rutile SnO2 NWs on a variety of conducting substrates by atomic layer deposition (ALD) seeding has been investigated. The seeded growth controls the nucleation event of the NW, and thicknesses and crystallographic properties of seed layers are the key parameters toward tuning the NW characteristics. The seed layers on carbon cloth produce NWs with highly enhanced electrochemically active surface area, which would show efficient electrochemical CO2 reduction. In addition, the hierarchical architecture resulted from the seeded growth of NWs on SnO2 nanosheets allows thin layers of BiVO4, forming a heterojunction photoanode, which shows a record charge separation efficiency of 96.6% and a charge-transfer efficiency of 90.2% at 1.23 V versus the reversible hydrogen electrode among, to date, the reported BiVO4-based photoanodes for water oxidation. Our study illustrates that such a versatile interfacial engineering effort by the ALD technique would be promising for further wide range of practical applications.

2.
Materials (Basel) ; 11(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843376

RESUMO

We report the successful synthesis of surface defective small size (SS) SnO2 nanoparticles (NPs) by adopting a low temperature surfactant free solution method. The structural properties of the NPs were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The presence of surface defects, especially oxygen vacancies, in the sample were characterized using micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence emission. The Brunauer⁻Emmet⁻Teller (BET) nitrogen adsorption⁻desorption isotherms demonstrated the superior textural properties (high surface area and uniform pore size) of SS SnO2 compared to large size (LS) SnO2. A comparable study was drawn between SS SnO2 and LS SnO2 NPs and a significant decrease in the concentration of surface defects was observed for the LS sample. The results showed that surface defects significantly depend upon the size of the NPs. The surface defects formed within the band gap energy level of SnO2 significantly participated in the recombination process of photogenerated charge carriers, improving photochemical properties. Moreover, the SS SnO2 showed superior photoelectrochemical (PEC) and photocatalytic activities compared to the LS SnO2. The presence of a comparatively large number of surface defects due to its high surface area may enhance the photochemical activity by reducing the recombination rate of the photogenerated charges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...