Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 332(2): 327-35, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19150074

RESUMO

Polystyrene nanocomposites using hybrid organic inorganic (O/I) layered double hydroxide (LDH) and 4[12-(methacryloylamino)dodecanoylamino]benzenesulfonate (MADABS) interleaved molecules were studied as a function of the filler miscibility, dispersion, and the rheological behavior. Incorporation of the I/O filler gave rise to an expanded intercalated PS nanocomposite structure, while an immiscible structure was obtained after a thermal pre-treatment. However the utmost non-linear viscoelasticity in the low-omega region was obtained from the immiscible PS nanocomposite structure. Indeed, the presence of a sub-micrometer percolated structure was here depicted resulting in a jammed structure that progressively changed the typical low-frequency Newtonian flow behavior of PS to a shear-thinning behavior against the filler percentage, having as a consequence to restrict the plastic deformation in the low-omega region by obstructing polymer chain motion. From several characterizations XRD, TEM, and rheology, we demonstrated the presence of LDH agglomerates in spite of PS chain crawling in between the layers, whereas the apparent immiscible structure was composed of well dispersed LDH tactoids forming a three-dimensional percolated network. The gel-like behavior illustrated by the frequency power law dependence of the complex viscosity |eta(*)| proportional to omega(n), n approximately = -0.75 at 10 wt% of MADABS/LDH hybrid filler was then explained by the interconnected and concatenated hybrid LDH platelets domains developing an interfacial attrition with PS chains.

2.
J Colloid Interface Sci ; 326(2): 366-73, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18620362

RESUMO

A series of blue dye molecules, Evans blue (EB), Chicago sky blue (CB), Niagara blue (NB) were incorporated by direct co-precipitation within the galleries of negatively charge layered double hydroxide (LDH). The materials of cation composition Zn/Al = 2 lead to well-defined organic inorganic assemblies. The molecular arrangement of the interleaved dye molecule is proposed by 1D electronic density projection along the stacking direction for the hydrothermally treated samples with alternatively a highly inclined orientation of EB and CB and a parallel-bilayer arrangement for NB. Blue coloured LDH assemblies were subsequently dispersed into polystyrene (PS). It was found that the hybrid fillers do not interfere in the radical polymerization of styrene, giving rise to similar molecular weight and polydispersity than filler free PS, while higher glass transition temperatures were obtained for the nanocomposites. This was consistent with the rheological behaviour with the observation for LDH/NB filler based nanocomposite of shear thinning exponent different from zero, underlining frictional interaction between filler and PS chain. The absorption maximum slightly blue-shifted for the hybrid filler in comparison to the corresponding organic dye was found unmodified for the PS nanocomposite, thus giving rise to blue coloured plastic films, reminiscent somehow of the blue Maya effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...