Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Neural Syst ; 34(8): 2450043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770651

RESUMO

Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with R2 up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.


Assuntos
Aprendizado Profundo , Progressão da Doença , Neuroimagem , Doença de Parkinson , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Humanos , Neuroimagem/métodos , Aprendizado de Máquina Supervisionado , Imagem Multimodal , Masculino , Feminino
2.
Inf Fusion ; 58: 153-167, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32284705

RESUMO

Despite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.

3.
Front Neuroinform ; 11: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209194

RESUMO

A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the α-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the α-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI.

4.
Front Neuroinform ; 11: 65, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184492

RESUMO

The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD) of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the access is limited and, therefore, a direct comparison between CAD procedures is not possible. Furthermore, the sample size is often small for developing accurate machine learning methods. Multi-center initiatives are currently a very useful, although limited, tool in the recruitment of large populations and standardization of CAD evaluation. Conversely, we propose a brain image synthesis procedure intended to generate a new image set that share characteristics with an original one. Our system focuses on nuclear imaging modalities such as PET or SPECT brain images. We analyze the dataset by applying PCA to the original dataset, and then model the distribution of samples in the projected eigenbrain space using a Probability Density Function (PDF) estimator. Once the model has been built, we can generate new coordinates on the eigenbrain space belonging to the same class, which can be then projected back to the image space. The system has been evaluated on different functional neuroimaging datasets assessing the: resemblance of the synthetic images with the original ones, the differences between them, their generalization ability and the independence of the synthetic dataset with respect to the original. The synthetic images maintain the differences between groups found at the original dataset, with no significant differences when comparing them to real-world samples. Furthermore, they featured a similar performance and generalization capability to that of the original dataset. These results prove that these images are suitable for standardizing the evaluation of CAD pipelines, and providing data augmentation in machine learning systems -e.g. in deep learning-, or even to train future professionals at medical school.

5.
Front Comput Neurosci ; 11: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051730

RESUMO

Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.

6.
Int J Neural Syst ; 27(3): 1650050, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27776438

RESUMO

Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer's disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer's disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte , Idoso , Algoritmos , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Sensibilidade e Especificidade
7.
Front Comput Neurosci ; 9: 137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594165

RESUMO

Differentiating between Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) is still a challenge, specially at early stages when the patients show similar symptoms. During last years, several computer systems have been proposed in order to improve the diagnosis of PD, but their accuracy is still limited. In this work we demonstrate a full automatic computer system to assist the diagnosis of PD using (18)F-DMFP PET data. First, a few regions of interest are selected by means of a two-sample t-test. The accuracy of the selected regions to separate PD from APS patients is then computed using a support vector machine classifier. The accuracy values are finally used to train a Bayesian network that can be used to predict the class of new unseen data. This methodology was evaluated using a database with 87 neuroimages, achieving accuracy rates over 78%. A fair comparison with other similar approaches is also provided.

8.
Neuroinformatics ; 13(4): 391-402, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25749984

RESUMO

Spatial affine registration of brain images to a common template is usually performed as a preprocessing step in intersubject and intrasubject comparison studies, computer-aided diagnosis, region of interest selection and brain segmentation in tomography. Nevertheless, it is not straightforward to build a template of [123I]FP-CIT SPECT brain images because they exhibit very low intensity values outside the striatum. In this work, we present a procedure to automatically build a [123I]FP-CIT SPECT template in the standard Montreal Neurological Institute (MNI) space. The proposed methodology consists of a head voxel selection using the Otsu's method, followed by a posterization of the source images to three different levels: background, head, and striatum. Analogously, we also design a posterized version of a brain image in the MNI space; subsequently, we perform a spatial affine registration of the posterized source images to this image. The intensity of the transformed images is normalized linearly, assuming that the histogram of the intensity values follows an alpha-stable distribution. Lastly, we build the [123I]FP-CIT SPECT template by means of the transformed and normalized images. The proposed methodology is a fully automatic procedure that has been shown to work accurately even when a high-resolution magnetic resonance image for each subject is not available.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos/metabolismo , Algoritmos , Humanos , Reprodutibilidade dos Testes
9.
Front Comput Neurosci ; 8: 156, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505408

RESUMO

This work presents a spatial-component (SC) based approach to aid the diagnosis of Alzheimer's disease (AD) using magnetic resonance images. In this approach, the whole brain image is subdivided in regions or spatial components, and a Bayesian network is used to model the dependencies between affected regions of AD. The structure of relations between affected regions allows to detect neurodegeneration with an estimated performance of 88% on more than 400 subjects and predict neurodegeneration with 80% accuracy, supporting the conclusion that modeling the dependencies between components increases the recognition of different patterns of brain degeneration in AD.

10.
Neuroimage ; 65: 449-55, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063448

RESUMO

In this work, a linear procedure to perform the intensity normalization of FP-CIT SPECT brain images is presented. This proposed methodology is based on the fact that the histogram of intensity values can be fitted accurately using a positive skewed α-stable distribution. Then, the predicted α-stable parameters and the location-scale property are used to linearly transform the intensity values in each voxel. This transformation is performed such that the new histograms in each image have a pre-specified α-stable distribution with desired location and dispersion values. The proposed methodology is compared with a similar approach assuming Gaussian distribution and the widely used specific-to-nonspecific ratio. In this work, we show that the linear normalization method using the α-stable distribution outperforms those existing methods.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Compostos Radiofarmacêuticos , Tropanos
11.
BMC Med Inform Decis Mak ; 12: 79, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849649

RESUMO

BACKGROUND: Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS: It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS: Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS: All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Análise de Componente Principal , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Inteligência Artificial , Interpretação Estatística de Dados , Diagnóstico Precoce , Feminino , Neuroimagem Funcional/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Espanha , Tomografia Computadorizada de Emissão de Fóton Único
12.
Neurosci Lett ; 461(1): 60-4, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19477227

RESUMO

This paper presents a computer-aided diagnosis technique for improving the accuracy of diagnosing the Alzheimer's type dementia. The proposed methodology is based on the calculation of the skewness for each m-by-m-by-m sliding block of the SPECT brain images. The center pixel in this m-by-m-by-m block is replaced by the skewness value to build a new 3-D brain image which is used for classification purposes. After that, voxels which present a Welch's t-statistic between classes, Normal and Alzheimer's images, higher (or lower) than a threshold are selected. The mean, standard deviation, skewness and kurtosis are calculated for these selected voxels and they are subjected as features to linear kernel based support vector machine classifier. The proposed methodology reaches accuracy higher than 99% in the classification task.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Cisteína/análogos & derivados , Humanos , Compostos de Organotecnécio , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...