Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 136-137: 10-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659096

RESUMO

This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times.


Assuntos
Água Subterrânea/química , Tsunamis , Movimentos da Água , Ásia , Fenômenos Geológicos , Poluentes Químicos da Água/química
2.
J Contam Hydrol ; 131(1-4): 9-28, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22326687

RESUMO

While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.


Assuntos
Água Subterrânea/análise , Ferro/química , Nanopartículas/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Cromatografia Gasosa , Halogenação , Modelos Químicos , Modelos Teóricos , Nanotecnologia
3.
J Contam Hydrol ; 102(1-2): 3-16, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18774622

RESUMO

In situ chemical oxidation is a technology that has been applied to speed up remediation of a contaminant source zone by inducing increased mass transfer from DNAPL sources into the aqueous phase for subsequent destruction. The DNAPL source zone can consist of one or more individual sources that may be present as an interconnected pool of high saturation, as a region of disconnected ganglia at residual saturation, or as combinations of these two morphologies. Potassium permanganate (KMnO(4)) is a commonly employed oxidant that has been shown to rapidly destroy DNAPL compounds like PCE and TCE following second-order kinetics in an aqueous system. During the oxidation of a target DNAPL compound, or naturally occurring reduced species in the subsurface, manganese oxide (MnO(2)) solids are produced. Research has shown that these manganese oxide solids may result in permeability reductions in the porous media thus reducing the ability for oxidant to be transported to individual DNAPL sources. It can also occur at the DNAPL-water interface, decreasing contact of the oxidant with the DNAPL. Additionally, MnO(2) formation at the DNAPL-water interface, and/or flow-bypassing as a result of permeability reductions around the source, may alter the mass transfer from the DNAPL into the aqueous phase, potentially diminishing the magnitude of any DNAPL mass depletion rate increase induced by oxidation. An experiment was performed in a two-dimensional (2D) sand-filled tank that included several discrete DNAPL source zones. Spatial and temporal monitoring of aqueous PCE, chloride, and permanganate concentrations was used to relate changes in mass depletion of, and mass flux, from DNAPL residual and pool source zones to chemical oxidation performance and MnO(2) formation. During the experiment, permeability changes were monitored throughout the 2D tank and these were related to MnO(2) deposition as measured through post-oxidation soil coring. Under the conditions of this experiment, MnO(2) formation was found to reduce permeability in and around DNAPL source zones resulting in changes to the overall flow pattern, with the effects depending on source zone configuration. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO(2) pore-blocking that substantially reduced mass transfer from the pool even though there was relatively little PCE mass removed from the pool. In contrast, a pool with residual around it (in a more typical heterogeneous flow field) appeared to undergo increased mass transfer as MnO(2) reduced permeability, altering the water flow and increasing the mixing at the DNAPL-water interface. Further, the magnitude of increased PCE mass depletion during oxidation appeared to depend on the PCE source configuration (pool versus ganglia) and decreased as MnO(2) was formed and deposited at the DNAPL-water interface. Overall, the oxidation of PCE mass appeared to be rate-limited by the mass transfer from the DNAPL to aqueous phase.


Assuntos
Recuperação e Remediação Ambiental , Permanganato de Potássio/química , Permanganato de Potássio/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Oxirredução , Poluentes Químicos da Água/isolamento & purificação
4.
J Contam Hydrol ; 76(3-4): 211-33, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15683881

RESUMO

A quantitative two-dimensional laboratory experiment was conducted to investigate the immiscible flow of a light non-aqueous phase liquid (LNAPL) in the vadose zone. An image analysis technique was used to determine the two-dimensional saturation distribution of LNAPL, water and air during LNAPL infiltration and redistribution. Vertical water saturation variations were also continuously monitored with miniature resistivity probes. LNAPL and water pressures were measured using hydrophobic and hydrophilic tensiometers. This study is limited to homogeneous geological conditions, but the unique experimental methods developed will be used to examine more complex systems. The pressure measurements and the quantification of the saturation distribution of all the fluids in the entire flow domain under transient conditions provide quantitative data essential for testing the predictive capability of numerical models. The data are used to examine the adequacy of the constitutive pressure-saturation relations that are used in multiphase flow models. The results indicate that refinement of these commonly used hydraulic relations is needed for accurate model prediction. It is noted in particular that, in three-fluid phase systems, models should account for the existence of a residual NAPL saturation occurring after NAPL drainage. This is of notable importance because residual NAPL can act as a non negligible persistent source of contamination.


Assuntos
Solventes/química , Poluentes da Água , Água/química , Ar/análise , Modelos Teóricos , Tamanho da Partícula , Porosidade , Pressão , Reologia , Dióxido de Silício/química , Solubilidade , Movimentos da Água
5.
J Hazard Mater ; 110(1-3): 13-27, 2004 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15177723

RESUMO

A number of previous studies are reviewed to examine the actual reduction of NAPL from source zones and the effectiveness of the specific technique of remediation used at sites under study. It has been shown that complete removal of the NAPL in free phase or residual is not possible due to the complex entrapment architecture of NAPLs at field sites. Consequently, the assessment of remediation efficiency should not be solely based on the reduction of entrapped NAPL mass from source zone. Instead, it should be based on the reduction of risk achieved through the lowering of the concentration of the dissolved constituents emanating from the entrapped NAPL during source zone clean-up. The prediction of the concentration in the plume requires a knowledge of the dissolution of NAPLs in the source zone. Attention is directed to the need for the understanding the mass transfer from entrapped NAPLs in the source zone before and after remediation. In this paper, the current knowledge of mass transfer processes from the non-aqueous phase to the aqueous phase is summarised and the use of mass flux measurements (monitoring the concentration of contaminants in aqueous phase due to source zone NAPL-groundwater mass transfer) is introduced as a potential tool to assess the efficiency of technologies used in source zone remediation. Preliminary results of numerical simulations reveal that factors such as source zone morphology as determined by the heterogeneity of the formation control the post-remediation dissolution behaviour, than the local mass transfer. Thus, accurate site characterization is essential for predicting NAPL dissolution and mass flux relationships as well as for assigning site-specific remediation target values.


Assuntos
Água Doce/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Estudos de Avaliação como Assunto , Cinética , Modelos Químicos
6.
J Contam Hydrol ; 59(1-2): 27-44, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12683638

RESUMO

The effectiveness of removal of nonaqueous phase liquids (NAPLs) from the entrapment source zone of the subsurface has been limited by soil heterogeneity and the inability to locate all entrapped sources. The goal of this study was to demonstrate the uncertainty of degree of source removal associated with aquifer heterogeneity. In this demonstration, source zone NAPL removal using surfactant-enhanced dissolution was considered. Model components that simulate the processes of natural dissolution in aqueous phase and surfactant-enhanced dissolution were incorporated into an existing code of contaminant transport. The dissolution modules of the simulator used previously developed Gilland-Sherwood type phenomenological models of NAPL dissolution to estimate mass transfer coefficients that are upscaleable to multidimensional flow conditions found at field sites. The model was used to simulate the mass removal from 10 NAPL entrapment zone configurations based on previously conducted two-dimensional tank experiments. These entrapment zones represent the NAPL distribution in spatially correlated random fields of aquifer hydraulic conductivity. The numerical simulations representing two-dimensional conditions show that effectiveness of mass removal depends on the aquifer heterogeneity that controls the NAPL entrapment and delivery of the surfactant to the locations of entrapped NAPLs. Flow bypassing resulting from heterogeneity and the reduction of relative permeability due to NAPL entrapment reduces the delivery efficiency of the surfactant, thus prolonging the remediation time to achieve desired end-point NAPL saturations and downstream dissolved concentrations. In some extreme cases, the injected surfactant completely bypassed the NAPL source zones. It was also found that mass depletion rates for different NAPL source configurations vary significantly. The study shows that heterogeneity result in uncertainties in the mass removal and achievable end-points that are directly related to dissolved contaminant plume development downstream of the NAPL entrapment zone.


Assuntos
Hidrocarbonetos/química , Modelos Teóricos , Poluentes do Solo/análise , Tensoativos/química , Poluentes da Água/análise , Determinação de Ponto Final , Poluição Ambiental/prevenção & controle , Solubilidade , Movimentos da Água
7.
J Contam Hydrol ; 51(1-2): 63-82, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11530927

RESUMO

Because of their low solubility, waste chemicals in the form of nonaqueous phase liquids (NAPLs) that are entrapped in subsurface formations act as long-term sources of groundwater contamination. In the design of remediation schemes that use surfactants, it is necessary to estimate the mass transfer rate coefficients under multi-dimensional flow fields that exit at field sites. In this study, we investigate mass transfer under a two-dimensional flow field to obtain an understanding of the basic mechanisms of surfactant-enhanced dissolution and to quantify the mass transfer rates. Enhanced dissolution experiments in a two-dimensional test cell were conducted to measure rates of mass depletion from entrapped NAPLs to a flowing aqueous phase containing a surfactant. In situ measurement of transient saturation changes using a gamma attenuation system revealed dissolution patterns that are affected by the dimensionality of the groundwater flow field. Numerical modeling of local flow fields that changed with time, due to depletion of NAPL sources, enabled the examination of the basic mechanisms of NAPL dissolution in complex groundwater systems. Through nonlinear regression analysis, mass transfer rates were correlated to porous media properties, NAPL saturation and aqueous phase velocity. Results from the experiments and numerical analyses were used to identify deficiencies in existing methods of analysis that uses assumptions of one-dimensional flow, homogeneity of aquifer properties, local equilibrium and idealized transient mass transfer.


Assuntos
Poluentes do Solo/análise , Tensoativos/química , Poluentes da Água/análise , Monitoramento Ambiental , Modelos Teóricos , Solubilidade , Poluição da Água/prevenção & controle
8.
Water Resour Res ; 37(5): 1231-43, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-12238522

RESUMO

In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.


Assuntos
Modelos Teóricos , Raízes de Plantas/crescimento & desenvolvimento , Voo Espacial , Abastecimento de Água , Ausência de Peso , Meios de Cultura , Hidroponia , Sistemas de Manutenção da Vida , Membranas Artificiais , Solo
9.
Environ Sci Technol ; 35(24): 4894-9, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11775167

RESUMO

Research on the use of partitioning and interfacial tracers has led to the development of techniques for estimating subsurface NAPL amount and NAPL-water interfacial area. Although these techniques have been utilized with some success at field sites, current application is limited largely to NAPL at residual saturation, such as for the case of post-remediation settings where mobile NAPL has been removed through product recovery. The goal of this study was to fundamentally evaluate partitioning and interfacial tracer behavior in controlled column-scale test cells for a range of entrapment configurations varying in NAPL saturation, with the results serving as a determinant of technique efficacy (and design protocol) for use with complexly distributed NAPLs, possibly at high saturation, in heterogeneous aquifers. Representative end members of the range of entrapment configurations observed under conditions of natural heterogeneity (an occurrence with residual NAPL saturation [discontinuous blobs] and an occurrence with high NAPL saturation [continuous free-phase LNAPL lens]) were evaluated. Study results indicated accurate prediction (using measured tracer retardation and equilibrium-based computational techniques) of NAPL amount and NAPL-water interfacial area for the case of residual NAPL saturation. For the high-saturation LNAPL lens, results indicated that NAPL-water interfacial area, but not NAPL amount (underpredicted by 35%), can be reasonably determined using conventional computation techniques. Underprediction of NAPL amount lead to an erroneous prediction of NAPL distribution, as indicated by the NAPL morphology index. In light of these results, careful consideration should be given to technique design and critical assumptions before applying equilibrium-based partitioning tracer methodology to settings where NAPLs are complexly entrapped, such as in naturally heterogeneous subsurface formations.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Água/análise , Algoritmos , Desenho de Equipamento , Solo/análise , Tensão Superficial , Tensoativos/análise , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA