Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 27(2): 298-304, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23239377

RESUMO

RATIONALE: Electron ionization of three perfluoroethers (PFEs), C(6)F(14)O(3), C(8)F(18)O(4), and C(10)F(20)O(5), is studied in the gas phase and when the molecules are embedded in ultracold helium (He) droplets. The molecules investigated are model compounds for perfluoropolyethers used as lubricants in technical applications. The present study gives insight into possible radiolysis pathways upon radiation exposure. METHODS: The experiments utilized a crossed electron/droplet beam apparatus consisting of a He droplet source and pick-up chamber combined with a commercial time-of-flight mass spectrometer. The doped droplets were ionized by electron ionization at 70 eV. RESULTS: The He environment strongly affects the ionization patterns in the way that both the molecular ion M(+) and high-mass fragment ions formed by the loss of light neutral species such as F([M-F](+)), or CF(3)OCF(2) ([M-CF(3)OCF(2)](+)), etc., became strong signals in the mass spectrum. These signals were not or only barely visible in the gas-phase experiment and were identified as short lived (< µs) dissociation intermediates which in the gas phase immediately decomposed into lower-mass fragment ions. CONCLUSIONS: Ionic fragmentation intermediates are frozen and subsequently stabilized in the He environment. Helium droplets can hence be viewed as a cryogenic laboratory transforming short-lived decomposition intermediates into stable fragment ions appearing as strong signals in the mass spectrum.

2.
Int J Mass Spectrom ; 306(1): 63-69, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21977005

RESUMO

Negative ion formation in the three perfluoroethers (PFEs) diglyme (C(6)F(14)O(3)), triglyme (C(8)F(18)O(4)) and crownether (C(10)F(20)O(5)) is studied following electron attachment in the range from ∼0 to 15 eV. All three compounds show intense low energy resonances at subexcitation energies (<3 eV) decomposing into a variety of negatively charged fragments. These fragment ions are generated via dissociative electron attachment (DEA), partly originating from sequential decompositions on the metastable (µs) time scale as observed from the MIKE (metastable induced kinetic energy) scans. Only in perfluorocrownether a signal due to the non-decomposed parent anion is observed. Additional and comparatively weaker resonances are located in the energy range between ∼10 and 17 eV which preferentially decompose into lighter ions. It is suggested that specific features of perfluoropolyethers (PFPEs) relevant in applications, e.g., the strong bonding to surfaces induced by UV radiation of the substrate or degradation of PFPE films in computer hard disc drives can be explained by their pronounced sensitivity towards low energy electrons.

3.
J Phys Chem A ; 114(3): 1474-84, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20039623

RESUMO

Results from a joint experimental study of electron attachment to dichlorodifluoromethane (CCl(2)F(2)) molecules in the gas phase are reported. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for formation of the dominant anion Cl(-) was measured over the energy range 0.001-1.8 eV at the gas temperature T(G) = 300 K. It exhibits cusp structure at thresholds for vibrational excitation of the nu(3)(a(1)) mode due to interaction with the attachment channels. With reference to the thermal attachment rate coefficient k(T = 300 K) = 2.2(8) x 10(-9) cm(3) s(-1) (fitted average from several data), a new highly resolved absolute attachment cross section for T(G) = 300 K was determined. Partial cross sections for formation of the anions Cl(-), Cl(2)(-), F(-), ClF(-), and CCl(2)F(-) were measured over the range 0-12 eV, using three different electron beam experiments of medium energy resolution. The dependence of the attachment rate coefficient k(T(e);T(G) = 300 K) on electron temperature T(e) was calculated over the range 50-15 000 K, based on a newly constructed total cross section for anion formation at T(G) = 300 K. R-matrix calculations for Cl(-) production have been carried out for comparison with the experimental data. The R-matrix results are in line with the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3)() and on the vibrational temperature. Furthermore, the cross section for vibrational excitation of the nu(3) mode has been computed.

4.
Phys Chem Chem Phys ; 11(11): 1838-45, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19290356

RESUMO

We have investigated by means of HREEL spectroscopy electron induced reactivity in a binary CO2 : NH3 ice mixture. It was shown that the interaction of low energy electrons (9-20 eV) with such mixtures induces the synthesis of neutral carbamic acid NH2COOH and that flashing the sample at 140 K induces the formation of ammonium carbamate. The products have been assigned by FTIR spectroscopy of a CO2 : NH3 mixture heated from 10 K to 240 K. A mechanism involving dissociation of NH3 molecules into NH2* and H* radicals is proposed to explain the product formation.

5.
Phys Chem Chem Phys ; 9(42): 5680-5, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17960256

RESUMO

Dissociative electron attachment to gas phase glycine generates a number of fragment ions, among them ions observed at the mass numbers 15, 16 and 26 amu. From stoichiometry they can be assigned to the chemically rather different species NH(-)/CH(3)(-)(15 amu), O(-)/NH(2)(-)(16 amu) and CN(-)/C(2)H(2)(-)(26 amu). Here we use a high resolution double focusing two sector mass spectrometer to separate these isobaric ions. It is thereby possible to unravel the decomposition reactions of the different transient negative ions formed upon resonant electron attachment to neutral glycine in the energy range 0-15 eV. We find that within the isobaric ion pairs, the individual components generally arise from resonances located at substantial different energies. The corresponding unimolecular decompositions involve complex reaction sequences including multiple bond cleavages and substantial rearrangement in the precursor ion. To support the interpretation and assignments we also use (13)C labelling of glycine at the carboxylic group.

6.
J Chem Phys ; 123(12): 124302, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16392477

RESUMO

Free-electron attachment to thymine and partially deuterated thymine, where D replaces H at all carbon atoms, is studied in the electron energy range from about 0 to 15 eV. The formation of fragment anions that are formed by the loss of one or two H (D) atoms is analyzed as a function of the incident electron energy using a crossed electron/neutral beam apparatus in combination with a quadrupole mass spectrometer. By using partially deuterated thymine and quantum-chemical calculation a bond selectivity for the loss of one and two hydrogen atoms is observed that is determined only by the kinetic energy of the incident electron.


Assuntos
Físico-Química/métodos , Timina/química , Ânions , Carbono/química , Deutério/química , Eletroquímica/métodos , Elétrons , Hidrogênio/química , Ligação de Hidrogênio , Cinética , Espectrometria de Massas , Modelos Químicos , Conformação Molecular , Distribuição Normal , Teoria Quântica
7.
Phys Rev Lett ; 90(18): 188104, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12786046

RESUMO

We demonstrate that electrons at energies below the threshold for electronic excitation (<3 eV) effectively decompose gas phase uracil generating a mobile hydrogen radical and the corresponding closed shell uracil fragment anion (U-H)(-). The reaction is energetically driven by the large electron affinity of the (U-H) radical. This observation has significant consequences for the molecular picture of radiation damage, i.e., genotoxic effects or damage of living cells due to the secondary component of high energy radiation.


Assuntos
Elétrons , Uracila/química , Dano ao DNA , RNA/química , RNA/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...