Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116833, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266874

RESUMO

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 µg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 µg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.


Assuntos
Arsênio , Arsenitos , Doenças Cardiovasculares , Efeitos Tardios da Exposição Pré-Natal , Humanos , Animais , Camundongos , Feminino , Gravidez , Arsênio/metabolismo , Arsenitos/toxicidade , Receptores de Progesterona , Exposição Materna/efeitos adversos , Remodelação Ventricular , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808684

RESUMO

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in-utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO 2 ) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that exposure to 1000 µg/L iAs abrogated normal physiologic growth of the maternal heart during late pregnancy and reduced transcript levels of estrogen receptor alpha (ERα), progesterone receptor membrane component 1 (Pgrmc1) and progesterone receptor membrane component 2 (Pgrmc2). Both 100 and 1000 µg/L iAs also reduced transcription of protein kinase B (Akt) and atrial natriuretic peptide (ANP). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.

3.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546857

RESUMO

Both tissue-resident macrophages and monocytes recruited from the bone marrow that transform into tissue-resident cells play critical roles in mediating homeostasis as well as in the pathology of inflammatory diseases. Inorganic arsenic (iAs) is the most common drinking water contaminant worldwide and represents a major public health concern. Several diseases that macrophages have implicated involvement in are caused by iAs exposure, including cardiovascular disease, cancer, and increased risk of infectious disease. Therefore, understanding the effects of iAs exposure on macrophages can help us better grasp the full range of arsenic immunotoxicity and better design therapeutic targets for iAs-induced diseases particularly in exposed populations. In this study, we analyzed the transcriptome of low dose iAs-exposed male and female murine bone marrow-derived macrophages (BMDMs) with either M0, M1, or M2 stimulation. We identified differentially expressed genes by iAs in a sex- and stimulation-dependent manner and used bioinformatics tools to predict protein-protein interactions, transcriptional regulatory networks, and associated biological processes. Overall, our data suggest that M1-stimulated, especially female-derived, BMDMs are most susceptible to iAs exposure. Most notably, we observed significant downregulation of major proinflammatory transcription factors, like IRF8, and its downstream targets, as well as genes encoding proteins involved in pattern recognition and antigen presentation, such as TLR7, TLR8, and H2-D1, potentially providing causal insight regarding arsenic's role in perturbing immune responses to infectious diseases. We also observed significant downregulation of genes involved in processes crucial to coordinating a proinflammatory response including leukocyte migration, differentiation, and cytokine and chemokine production and response. Finally, we discovered that 24 X-linked genes were dysregulated in iAs-exposed female stimulation groups compared to only 3 across the iAs-exposed male stimulation groups. These findings elucidate the potential mechanisms underlying the sex-differential iAs-associated immune-related disease risk.

4.
Toxicol Lett ; 383: 17-32, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244563

RESUMO

Prenatal arsenic exposure is a major public health concern, associated with altered birth outcomes and increased respiratory disease risk. However, characterization of the long-term effects of mid-pregnancy (second trimester) arsenic exposure on multiple organ systems is scant. This study aimed to characterize the long-term impact of mid-pregnancy inorganic arsenic exposure on the lung, heart, and immune system, including infectious disease response using the C57BL/6 mouse model. Mice were exposed from gestational day 9 till birth to either 0 or 1000 µg/L sodium (meta)arsenite in drinking water. Male and female offspring assessed at adulthood (10-12 weeks of age) did not show significant effects on recovery outcomes after ischemia reperfusion injury but did exhibit increased airway hyperresponsiveness compared to controls. Flow cytometric analysis revealed significantly greater total numbers of cells in arsenic-exposed lungs, lower MHCII expression in natural killer cells, and increased percentages of dendritic cell populations. Activated interstitial (IMs) and alveolar macrophages (AMs) isolated from arsenic-exposed male mice produced significantly less IFN-γ than controls. Conversely, activated AMs from arsenic-exposed females produced significantly more IFN-γ than controls. Although systemic cytokine levels were higher upon Mycobacterium tuberculosis (Mtb) infection in prenatally arsenic-exposed offspring there was no difference in lung Mtb burden compared to controls. This study highlights significant long-term impacts of prenatal arsenic exposure on lung and immune cell function. These effects may contribute to the elevated risk of respiratory diseases associated with prenatal arsenic exposure in epidemiology studies and point to the need for more research into mechanisms driving these maintained responses.


Assuntos
Arsênio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Masculino , Feminino , Animais , Humanos , Arsênio/toxicidade , Camundongos Endogâmicos C57BL , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA