Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9710, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852160

RESUMO

Chaperonin and cochaperonin, represented by E. coli GroEL and GroES, are essential molecular chaperones for protein folding. The double-ring assembly of GroEL is required to function with GroES, and a single-ring GroEL variant GroELSR forms a stable complex with GroES, arresting the chaperoning reaction cycle. GroES I25 interacts with GroEL; however, mutations of I25 abolish GroES-GroEL interaction due to the seven-fold mutational amplification in heptameric GroES. To weaken GroELSR-GroES interaction in a controlled manner, we used groES 7, a gene linking seven copies of groES, to incorporate I25 mutations in selected GroES modules in GroES7. We generated GroES7 variants with different numbers of GroESI25A or GroESI25D modules and different arrangements of the mutated modules, and biochemically characterized their interactions with GroELSR. GroES7 variants with two mutated modules participated in GroELSR-mediated protein folding in vitro. GroES7 variants with two or three mutated modules collaborated with GroELSR to perform chaperone function in vivo: three GroES7 variants functioned with GroELSR under both normal and heat-shock conditions. Our studies on functional single-ring bacterial chaperonin systems are informative to the single-ring human mitochondrial chaperonin mtHsp60-mtHsp10, and will provide insights into how the double-ring bacterial system has evolved to the single-ring mtHsp60-mtHsp10.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Substituição de Aminoácidos , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 60/química , Chaperonina 60/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes
2.
J Bacteriol ; 199(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396349

RESUMO

Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3 We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL.IMPORTANCEChlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and trachoma. The chlamydial chaperonin ChGroEL and chaperonin paralog ChGroEL2 have been associated with survival under stress conditions, and ChGroEL is linked with immunopathology elicited by chlamydial infections. However, their exact roles in bacterial survival and disease remain unclear. Our results further substantiate the hypotheses that ChGroEL is the primary chlamydial chaperonin and that the paralogs play specialized roles during infection. Furthermore, ChGroEL and the mitochondrial GroEL only functioned with their cochaperonin, in contrast to the promiscuous nature of GroEL from E. coli and Helicobacter pylori, which might indicate a divergent evolution of GroEL during the transition from a free-living organism to an obligate intracellular lifestyle.


Assuntos
Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Inativação de Genes , Genes Essenciais , Hidrólise , Malato Desidrogenase/metabolismo , Ligação Proteica , Dobramento de Proteína
3.
Biochem Biophys Res Commun ; 466(1): 15-20, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26271593

RESUMO

Escherichia coli chaperonin GroEL and its cochaperonin GroES are essential for cell growth as they assist folding of cellular proteins. The double-ring assembly of GroEL is required for the chaperone function, and a single-ring variant GroEL(SR) is inactive with GroES. Mutations in GroEL(SR) (A92T, D115N, E191G, and A399T) have been shown to render GroEL(SR)-GroES functional, but the molecular mechanism of activation is unclear. Here we examined various biochemical properties of these functional GroEL(SR)-GroES variants, including ATP hydrolysis rate, chaperonin-cochaperonin interaction, and in vitro protein folding activity. We found that, unlike the diminished ATPase activity of the inactive GroEL(SR)-GroES, all four single-ring variants hydrolyzed ATP at a level comparable to that of the double-ring GroEL-GroES. The chaperonin-cochaperonin interaction in these single-ring systems was weaker, by at least a 50-fold reduction, than the highly stable inactive GroEL(SR)-GroES. Strikingly, only GroEL(SR)D115N-GroES and GroEL(SR)A399T-GroES assisted folding of malate dehydrogenase (MDH), a commonly used folding substrate. These in vitro results are interesting considering that all four of the single-ring systems were able to substitute GroEL-GroES to support cell growth, suggesting that the precise action of chaperonin on MDH folding may not represent that on the intrinsic cellular substrates. Our findings that both effective ATP hydrolysis rate and moderate chaperonin-cochaperonin interaction are important factors for functional single-ring GroEL(SR)-GroES are reminiscent of the naturally occurring single-ring human mitochondrial chaperonin mtHsp60-mtHsp10. Differences in biochemical properties between the single- and double-ring chaperonin systems may be exploited in designing molecules for selective targeting.


Assuntos
Adenosina Trifosfatases/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mapas de Interação de Proteínas , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 60/química , Chaperonina 60/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Mutação , Conformação Proteica , Redobramento de Proteína
4.
J Biol Chem ; 286(35): 30401-30408, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757689

RESUMO

In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Ácido Aspártico/química , Regulação Bacteriana da Expressão Gênica , Variação Genética , Isoleucina/química , Leucina/química , Malato Desidrogenase/química , Mitocôndrias/metabolismo , Chaperonas Moleculares/química , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Dobramento de Proteína
5.
Res Lett Biochem ; 2009: 256124, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22820750

RESUMO

The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...