Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500799

RESUMO

The development of methods ensuring reliable control over explosive chemical reactions is a critical task for the safe and efficient application of energetic materials. Triggering the explosion by laser radiation is one of the promising methods. In this work, we demonstrate a technique of applying the common industrial high explosive pentaerythritol tetranitrate (PETN) as a photosensitive energetic material by adding zinc oxide nanopowders doped with copper and iron. Nanopowders of ZnO:Fe and ZnO:Cu able to absorb visible light were synthesized. The addition of one mass percent nanopowders in PETN decreased the threshold energy density of its initiation through Nd:YAG laser second harmonic (2.33 eV) by more than five times. The obtained energetic composites can be reliably initiated by a CW blue laser diode with a wavelength of 450 nm and power of 21 W. The low threshold initiation energy and short irradiation exposure of the PETN-ZnO:Cu composite makes it applicable in laser initiation devices. PETN-ZnO:Cu also can be initiated by an infrared laser diode with a wavelength of 808 nm. The proposed photochemical mechanism of the laser-induced triggering of the explosion reaction in the studied energetic composites was formulated. The results demonstrate the high promise of using nanomaterials based on zinc oxide as a sensitizer of industrial energetic materials to visible laser radiation.

2.
Phys Chem Chem Phys ; 22(43): 25284-25296, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33136098

RESUMO

Known applications of high energy density materials are impressively vast. Despite this, we argue that energetic materials are still underutilized for common energy purposes due to our inability to control explosive chemical reactions releasing energy from these materials. The situation appears paradoxical as energetic materials (EM) possess massive amounts of energy and, hence, should be most appropriate for applications in many energy-intensive processes. Here, we discover how chemical decomposition reactions can be stimulated with laser excitation and therefore, highly controlled by selectively designing energetic material - metal oxide interfaces with an example of pentaerythritol tetranitrate (PETN)-MgO and trinitrotoluene (TNT)-MgO composite samples. Density functional theory and embedded cluster method calculations were combined with measurements of the optical absorption spectra and laser initiation experiments. We found that the first (1064 nm, 1.17 eV), second (532 nm, 2.33 eV), and third (355 nm, 3.49 eV) laser harmonics, to all of which pure energetic materials are transparent, can be effectively used to trigger explosive reactions in the PETN-MgO samples. We propose a consistent electronic mechanism that explains how specific sub-band optical transitions initiate decomposition chemistry. Also, this selectivity reveals a fundamental difference between materials chemistry at interfaces as we show on examples of PETN and TNT energetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...