Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109458, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38571760

RESUMO

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

2.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790377

RESUMO

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

3.
Bioconjug Chem ; 32(8): 1729-1741, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34282895

RESUMO

Conjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part. PEGylation was performed either in the N-terminus, the C-terminus, or in both termini, keeping the total number of ethylene groups (n = 48) constant. Ellipsometry showed KYE28 to exhibit pronounced affinity to both LPS and its hydrophobic lipid A moiety. The PEGylated peptide variants displayed lower, but comparable, affinity for both LPS and lipid A, irrespective of the PEGylation site. Furthermore, both KYE28 and its PEGylated variants triggered LPS aggregate disruption. To investigate the peptide structure in such LPS complexes, a battery of nuclear magnetic resonance (NMR) methods was employed. From this, it was found that KYE28 formed a well-folded structure after LPS binding, stabilized by hydrophobic domains involving aromatic amino acids as well as by electrostatic interactions. In contrast, the PEGylated peptide variants displayed a less well-defined secondary structure, suggesting weaker LPS interactions in line with the ellipsometry findings. Nevertheless, the N-terminal part of KYE28 retained helix formation after PEGylation, irrespective of the conjugation site. For THP1-Xblue-CD14 reporter cells, KYE28 displayed potent suppression of LPS activation at simultaneously low cell toxicity. Interestingly, the PEGylated KYE28 variants displayed similar or improved suppression of LPS-induced cell activation, implying the underlying key role of the largely retained helical structure close to the N-terminus, irrespective of PEGylation site. Taken together, the results show that PEGylation of HDPs can be done insensitively to the conjugation site without losing anti-inflammatory effects, even for peptides inducing such effects through one of its termini.


Assuntos
Lipídeo A/química , Lipopolissacarídeos/química , Peptídeos/química , Polietilenoglicóis , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Hemólise , Humanos , Modelos Moleculares , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
4.
Biochemistry ; 59(31): 2849-2858, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667811

RESUMO

The sterile α motif, also called the SAM domain, is known to form homo or heterocomplexes that modulate diverse biological functions through the regulation of specific protein-protein interactions. The MAPK pathway of budding yeast Saccharomyces cerevisiae is comprised of a three-tier kinase system akin to mammals. The MAPKKK Ste11 protein of yeast contains a homodimer SAM domain, which is critical for transmitting cues to the downstream kinases. The structural stability of the dimeric Ste11 SAM is maintained by hydrophobic and ionic interactions at the interfacial amino acids. The urea-induced equilibrium-unfolding process of the Ste11 SAM domain is cooperative without evidence of any intermediate states. The native-state H/D exchange under subdenaturing conditions is a useful method for the detection of intermediate states of proteins. In the present study, we investigated the effect of ionic strength on the conformational stability of the dimer using the H/D exchange experiments. The hydrogen exchange behavior of the Ste11 dimer under physiological salt concentrations reveals two partially unfolded metastable intermediate states, which may be generated by a sequential and cooperative unfolding of the five helices present in the domain. These intermediates appear to be significant for the reversible unfolding kinetics via hydrophobic collapse. In contrast, higher ionic concentrations eliminate this cooperative interactions that stabilize the pairs of helices.


Assuntos
Medição da Troca de Deutério , MAP Quinase Quinase Quinases/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Cloreto de Sódio/farmacologia , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Estrutura Quaternária de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia
5.
Curr Med Chem ; 27(9): 1387-1404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31232231

RESUMO

Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant 'superbugs' as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.


Assuntos
Antibacterianos/química , Espectroscopia de Ressonância Magnética , Peptídeos
6.
J Biol Chem ; 294(40): 14615-14633, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31383740

RESUMO

The recent development of plants that overexpress antimicrobial peptides (AMPs) provides opportunities for controlling plant diseases. Because plants employ a broad-spectrum antimicrobial defense, including those based on AMPs, transgenic modification for AMP overexpression represents a potential way to utilize a defense system already present in plants. Herein, using an array of techniques and approaches, we report on VG16KRKP and KYE28, two antimicrobial peptides, which in combination exhibit synergistic antimicrobial effects against plant pathogens and are resistant against plant proteases. Investigating the structural origin of these synergistic antimicrobial effects with NMR spectroscopy of the complex formed between these two peptides and their mutated analogs, we demonstrate the formation of an unusual peptide complex, characterized by the formation of a bulky hydrophobic hub, stabilized by aromatic zippers. Using three-dimensional structure analyses of the complex in bacterial outer and inner membrane components and when bound to lipopolysaccharide (LPS) or bacterial membrane mimics, we found that this structure is key for elevating antimicrobial potency of the peptide combination. We conclude that the synergistic antimicrobial effects of VG16KRKP and KYE28 arise from the formation of a well-defined amphiphilic dimer in the presence of LPS and also in the cytoplasmic bacterial membrane environment. Together, these findings highlight a new application of solution NMR spectroscopy to solve complex structures to study peptide-peptide interactions, and they underscore the importance of structural insights for elucidating the antimicrobial effects of AMP mixtures.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos/química , Doenças das Plantas/genética , Relação Estrutura-Atividade , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/genética , Resistência à Doença/genética , Lipopolissacarídeos/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Mapas de Interação de Proteínas/genética , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/patogenicidade , Xanthomonas/efeitos dos fármacos , Xanthomonas/genética , Xanthomonas/patogenicidade
7.
Colloids Surf B Biointerfaces ; 176: 360-370, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658284

RESUMO

Two-dimensional (2D) tungsten disulfide (WS2) quantum dots offer numerous promising applications in materials and optoelectronic sciences. Additionally, the catalytic and photoluminescence properties of ultra-small WS2 nanoparticles are of potential interest in biomedical sciences. Addressing the use of WS2 in the context of infection, the present study describes the conjugation of two potent antimicrobial peptides with WS2 quantum dots, as well as the application of the resulting conjugates in antimicrobial therapy and bioimaging. In doing so, we determined the three-dimensional solution structure of the quantum dot-conjugated antimicrobial peptide by a series of high-resolution nuclear magnetic resonance (NMR) techniques, correlating this to the disruption of both model lipid and bacterial membranes, and to several key biological performances, including antimicrobial and anti-biofilm effects, as well as cell toxicity. The results demonstrate that particle conjugation enhances the antimicrobial and anti-biofilm potency of these peptides, effects inferred to be due to multi-dendate interactions for the conjugated peptides. As such, our study provides information on the mode-of-action of such conjugates, laying the foundation for their potential use in treatment and monitoring of infections.


Assuntos
Anti-Infecciosos/farmacologia , Diagnóstico por Imagem , Dissulfetos/química , Peptídeos/química , Pontos Quânticos/química , Tungstênio/química , Sequência de Aminoácidos , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/ultraestrutura , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura
8.
J Med Chem ; 61(17): 7614-7629, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30070835

RESUMO

Antimicrobial peptides have gained widespread attention as an alternative to the conventional antibiotics for combating microbial infections. Here, we report a detailed structure-function correlation of two nontoxic, nonhemolytic, and salt-tolerant de novo designed seven-residue leucine-lysine-based peptides, NH2LKWLKKLCONH2 (P4) and NH2LRWLRRLCONH2 (P5), with strong antimicrobial and antifungal activity. Biological experiments, low- and high-resolution spectroscopic techniques in conjunction with molecular dynamics simulation studies, could establish the structure-function correlation. The peptides are unstructured both in water and in bacterial membrane mimicking environment, suggesting that the secondary structure does not play a major role in their activity. Our studies could justify the probable membranolytic mode of action for killing the pathogens. Attempts to understand the mode of action of these small AMPs is fundamental in the rational design of more potential therapeutic molecules beyond serendipity in the future.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/química , Antifúngicos/química , Dicroísmo Circular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrócitos/efeitos dos fármacos , Hemolíticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Micelas , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
9.
Nanoscale ; 9(37): 14074-14093, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28901372

RESUMO

Although nanoparticle-tagged antimicrobal peptides have gained considerable importance in recent years, their structure-function correlation has not yet been explored. Here, we have studied the mechanism of action of a designed antimicrobial peptide, VG16KRKP (VARGWKRKCPLFGKGG), delivered via gold nanoparticle tagging against Salmonella infection by combining biological experiments with high- and low-resolution spectroscopic techniques. In comparison with the free VG16KRKP peptide or gold nanoparticle alone, the conjugated variant, Au-VG16KRKP, is non-cytotoxic to eukaryotic cells, but exhibits strong bacteriolytic activity in culture. Au-VG16KRKP can penetrate host epithelial and macrophage cells as well as interact with intracellular S. Typhi LPS under both in vitro and in vivo conditions. Treatment of mice with Au-VG16KRKP post-infection with S. Typhi resulted in reduced intracellular bacterial recovery and highly enhanced protection against S. Typhi challenge. The three-dimensional high resolution structure of nanoparticle conjugated VG16KRKP depicted the generation of a well-separated amphipathic structure with slight aggregation, responsible for the increase of the local concentration of the peptide, thus leading to potent activity. This is the first report on the structural and functional characterization of a nanoparticle conjugated synthetic antimicrobial peptide that can kill intracellular pathogens and eventually protect against S. Typhi challenge in vivo.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Ouro , Nanopartículas Metálicas , Peptídeos/farmacologia , Animais , Células HEK293 , Células HT29 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhi , Células THP-1
10.
Biochemistry ; 56(9): 1348-1362, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28168875

RESUMO

In this study, we report an interaction study of a 13-residue analogue peptide VG13P (VARGWGRKCPLFG), derived from a designed VG16KRKP peptide (VARGWKRKCPLFGKGG), with a Lys6Gly mutation and removal of the last three residues Lys14-Gly15-Gly16, in lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria and responsible for sepsis or septic shock. VG13P displays an enhanced anti-endotoxin property as evident from significant reduction in LPS-induced TNF-α gene expression levels in a monocytic cell line, while it retains almost unchanged antimicrobial activity as its parent VG16KRKP against Gram-negative bacterial as well as fungal pathogens. In addition, in vitro LPS binding properties of VG13P in comparison to its parent VG16KRKP also remained unhindered, suggesting that the flexible C-terminal end of VG16KRKP may not play a major role in its observed antibacterial and LPS binding properties. An NMR-resolved solution structure of VG13P in LPS reveals two consecutive ß-turns: one at the N-terminus, followed by another at the central region, closely resembling a rocking chair. The crucial Lys6Gly mutation along with C-terminal truncation from VG16KRKP reorients the hydrophobic hub in VG13P in a unique way so as to fold the N-terminal end back on itself, forming a turn and allowing Val1 and Ala2 to interact with Leu11 and Phe12 to bring the hydrophobic residues closer together to form a more compact hub compared to its parent. The hub is further strengthened via CH-π interaction between Gly4 and Phe12. This accounts for its improved anti-endotoxin activity as well as to its uninterrupted antimicrobial activity.


Assuntos
Desenho de Fármacos , Endotoxinas/antagonistas & inibidores , Glicina/metabolismo , Lipopolissacarídeos/química , Micelas , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Bactérias/citologia , Bactérias/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
11.
Curr Med Chem ; 24(13): 1350-1364, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28093983

RESUMO

Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for the control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Desenho de Fármacos , Doenças das Plantas/prevenção & controle , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fungos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia
12.
Biophys J ; 111(8): 1724-1737, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760359

RESUMO

There is a significant need for developing compounds that kill Cryptococcus neoformans, the fungal pathogen that causes meningoencephalitis in immunocompromised individuals. Here, we report the mode of action of a designed antifungal peptide, VG16KRKP (VARGWKRKCPLFGKGG) against C. neoformans. It is shown that VG16KRKP kills fungal cells mainly through membrane compromise leading to efflux of ions and cell metabolites. Intracellular localization, inhibition of in vitro transcription, and DNA binding suggest a secondary mode of action for the peptide, hinting at possible intracellular targets. Atomistic structure of the peptide determined by NMR experiments on live C. neoformans cells reveals an amphipathic arrangement stabilized by hydrophobic interactions among A2, W5, and F12, a conventional folding pattern also known to play a major role in peptide-mediated Gram-negative bacterial killing, revealing the importance of this motif. These structural details in the context of live cell provide valuable insights into the design of potent peptides for effective treatment of human and plant fungal infections.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sequência de Bases , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cryptococcus neoformans/citologia , DNA/química , DNA/genética , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
13.
J Biol Chem ; 291(45): 23545-23556, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27679488

RESUMO

The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation.


Assuntos
Amiloide/antagonistas & inibidores , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Oligopeptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestrutura , Dicroísmo Circular , Polarização de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/química , Insulina/química , Microscopia de Força Atômica , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...