Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892189

RESUMO

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Assuntos
Benzimidazóis , Eletrodos , Benzimidazóis/química , Polímeros/química , Nanofibras/química , Fontes de Energia Elétrica , Membranas Artificiais , Eletrólitos/química , Resinas Acrílicas/química
2.
Polymers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406247

RESUMO

Composite materials have been used based on coordination polymers or microporous metal-organic frameworks (MOFs) combined with mesoporous matrices for adsorption-related techniques, which enable outflanking some adverse phenomena manifested during pristine components operation and enhance the performance and selectivity of the resulting materials. In this work, for the first time, the novel HKUST-1@BPS composites synthesized by the microwave-assisted (MW) technique starting from microporous HKUST-1 (Cu3(btc)2) MOF and biporous silica matrix (BPS) with bimodal mesopore size distribution were comparatively studied as materials for liquid-phase adsorption techniques utilizing the high-performance liquid chromatography (HPLC) method and benzene as a model adsorbate. It was established that the studied HKUST-1@BPS composites can function as stationary phases for HPLC, unlike the pristine HKUST-1 and bare BPS materials, due to the synergetic effect of both components based on the preliminary enhanced adsorbate mass transfer throughout the silica mesopores and, subsequently, its penetrating into HKUST-1 micropores. The suggested mechanism involves the initial deactivation of open metal Cu2+ sites in the HKUST-1 framework structure by isopropanol molecules upon adding this polar component into the mobile phase in the region of the isopropanol concentration of 0.0 to 0.2 vol.%. Thereafter, at the medium range of varying the isopropanol concentration in the eluent of 0.2 to 0.3 vol.%, there is an expansion of the previously inaccessible adsorption centers in the HKUST-1@BPS composites. Subsequently, while further increasing the isopropanol volume fraction in the eluent in the region of 0.3 to 5.0 vol.%, the observed behavior of the studied chromatographic systems is similar to the quasi-normal-phase HPLC pattern. According to the obtained thermodynamic data, benzene adsorption into HKUST-1 micropores from solutions with a vol.% of isopropanol in the range of 0.4 to 5.0 follows the unique entropy-driven mechanism previously described for the MIL-53(Al) framework. It was found that HKUST-1 loading in the composites and their preparation conditions have pronounced effects on their physicochemical properties and adsorption performance, including the adsorption mechanism.

3.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517274

RESUMO

To date, metal-organic frameworks (MOFs) have been recognized as promising solid phases in high-performance liquid chromatography (HPLC). This research aimed to elucidate the role of the physico-chemical characteristics of the microporous HKUST-1 metal-organic framework in its operation as a selective adsorbent in HPLC. For this, the HKUST-1 samples were prepared by microwave-assisted synthesis and a solvothermal procedure. According to the chromatographic examinations, the HKUST-1 material synthesized in the microwave fields shows an efficient performance in the selective adsorption of aromatic compounds with different functionalities. This study revealed a significant impact of the preparation procedure on the mechanism of the liquid-phase adsorption on the HKUST adsorbents under conditions of the HPLC. An effect of the elution solvent with the different coordination ability to the Cu2+ sites in the HKUST-1 structure on the adsorption selectivity was observed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extração Líquido-Líquido/métodos , Estruturas Metalorgânicas/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Adsorção
4.
J Adv Vet Anim Res ; 7(4): 718-725, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33409318

RESUMO

OBJECTIVE: Solubility and bioavailability are crucial for maximizing the activity of an antiparasitic drug. This study aimed to develop a combined preparation for antiparasitic medicines using ivermectin (Iver), fenbendazole (FBZ), and triclabendazole (TBZ), considering their solubility, bioavailability, and activity. MATERIALS AND METHODS: Innovative preparations in solid dispersions (SD) were obtained using the joint mechanical processing of drug substances with polyvinylpyrrolidone (PVP) in an LE-101 roller mill. The preparations' efficacy was studied in 140 sheep spontaneously infected with gastrointestinal Strongylata, Dicrococelium dendriticum, Moniezia expansa, and Melophagus ovinus. The preparations were given individually to the sheep in the form of an aqueous suspension orally. Their effectiveness was evaluated using intravital and postmortem parasitological examinations. RESULTS: The results confirmed the increase in solubility of substances by 13-29 times. The experiments have shown the high efficacy of SD composition of FBZ/Iver/PVP (1/1/9) containing FBZ (at 3.0 mg/kg b/w) and Iver (at 0.2 mg/kg b/w) when used against gastrointestinal Strongylates and M. expansa (95.8% and 100%, respectively), to a lesser extent against M. ovinus (38.5%). The SD composition of TBZ/Iver/PVP (1/1/9) of TBZ (at 3.0 mg/kg b/w) and Iver (at 0.2 mg/kg b/w) showed a high efficacy against gastrointestinal Strongylata and D. dendriticum (96.8% and 100%, respectively) and less activity against M. ovinus (61.6%). CONCLUSION: The high parasiticidal activity of SD based on FBZ, TBZ, and Iver in comparison with initial substances is explained by the formation of inclusion complexes of these substances with PVP when SD is dissolved in water and the synergistic effect of the active substances of the preparations. The resulting complexes have increased solubility in water and bioavailability. The use of such an SD suggests a significant reduction in the dosages of FBZ and TBZ without losing parasiticidal activity.

5.
Molecules ; 22(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841177

RESUMO

Enantiomeric-enriched ferrocene-modified pyrazoles were synthesized via the reaction of the ferrocene alcohol, (S)-FcCH(OH)CH3 (Fc = ferrocenyl), with various pyrazoles in acidic conditions at room temperature within several minutes. X-ray structural data for racemic (R,S)-1N-(3,5-dimethyl pyrazolyl)ethyl ferrocene (1) and its (S)-enantiomer (S)-1 were determined. A series of racemic pyrazolylalkyl ferrocenes was separated into enantiomers by analytical HPLC on ß- and γ-cyclodextrins (CD) chiral stationary phases. The quantum chemical calculations of interaction energies of ß-CD were carried out for both (R)- and (S)-enantiomers. A high correlation between experimental HPLC data and calculated interaction energies values was obtained.


Assuntos
Compostos Ferrosos/química , Metalocenos/química , Modelos Moleculares , Pirazóis/síntese química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Compostos Ferrosos/síntese química , Metalocenos/síntese química , Estrutura Molecular , Pirazóis/isolamento & purificação , Teoria Quântica , Estereoisomerismo , Termodinâmica , Difração de Raios X , beta-Ciclodextrinas/química
6.
J Sep Sci ; 37(7): 803-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24488812

RESUMO

The paper describes unexpected properties of hypercross-linked polystyrenes with ultimate cross-linking degrees of 300, 400, and 500%, where three, four, or five methylene links, respectively, could bind each polystyrene phenyl ring to its spacious neighbors. The polymers exhibit a strong electron spin resonance signal, unusual spectra in IR, UV, and visible ranges, and they are not typical dielectrics. The nonfunctionalized hypercross-linked polymers absorb significant amounts of inorganic acids, salts, and bases due to interactions of protons or other cations with electron-donating fragments of the aromatic network with the high extent of mutual connectivity and also due to dispersion interactions of anions with the polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...