Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31097843

RESUMO

We present here the first experimental study of the microwave spectrum of deuterated 5-methyltropolone, a molecule which exhibits two large-amplitude motions: an intramolecular hydrogen transfer (deuterium transfer in the current case of deuterated 5-methyltropolone) and a methyl torsion. The main goal of this study was to get information on the isotopic dependence of the main tunneling parameters of 5-methyltropolone in the framework of the two dimensional tunneling formalism, which previously has shown some counterintuitive results for isotopic dependence of tunneling parameters in 2-methylmalonaldehyde. Measurements were carried out by Fourier-transform microwave spectroscopy in the 9 GHz to 26 GHz frequency range. Theoretical analysis was carried out using a tunneling-rotational Hamiltonian based on a G12 m extended-group-theory formalism. Our global fit of 384 transitions to 17 molecular parameters gave a weighted root-mean-square deviation of 0.8. The current study on the isotopic dependence of the main tunneling parameters in 5-methyltropolone supports the assumption of possible "leakage" between tunneling parameters in the two-dimensional tunneling formalism in use.

2.
Phys Chem Chem Phys ; 17(39): 26463-70, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26393883

RESUMO

Pure six-fold symmetry (V6) internal rotation poses significant challenges to experimental and theoretical determination, as the very low torsional barriers result in huge tunneling splittings difficult to identify and to model. Here we resolved the methyl group internal rotation dynamics of 2,6- and 3,5-difluorotoluene using a newly developed computer code especially adapted to V6 problems. The jet-cooled rotational spectra of the title molecules in the 5-25 GHz region revealed internal rotation tunneling doublings of up to 3.6 GHz, which translated in methyl group potential barriers of V6 = 0.14872(24) and 0.0856(10) kJ mol(-1), respectively, in the vibrational ground-state. Additional information on Stark effects and carbon isotopic species in natural abundance provided structural data and the electric dipole moments for both molecules. Ab initio calculations at the MP2 level do not reproduce the tiny torsional barriers, calling for experiments on other systems and additional theoretical models.

3.
J Chem Phys ; 133(18): 184307, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21073223

RESUMO

We present here the first experimental and theoretical study of the microwave spectrum of 5-methyltropolone, which can be visualized as a seven-membered "aromatic" carbon ring with a five-membered hydrogen-bonded cyclic structure at the top and a methyl group at the bottom. The molecule is known from earlier studies in the literature to exhibit two large-amplitude motions, an intramolecular hydrogen transfer and a methyl torsion. The former motion is particularly interesting because transfer of the hydrogen atom from the hydroxyl to the carbonyl group induces a tautomerization in the molecule, which then triggers a 60° internal rotation of the methyl group. Measurements were carried out by Fourier-transform microwave spectroscopy in the 8-24 GHz frequency range. Theoretical analysis was carried out using a tunneling-rotational Hamiltonian based on a G(12)(m) extended-group-theory formalism. Our global fit of 1015 transitions to 20 molecular parameters gave a root-mean-square deviation of 1.5 kHz. The tunneling splitting of the two J=0 levels arising from a hypothetical pure hydrogen-transfer motion is calculated to be 1310 MHz. The tunneling splitting of the two J=0 levels arising from a hypothetical pure methyl top internal-rotation motion is calculated to be 885 MHz. We have also carried out ab initio calculations, which support the structural parameters determined from our spectroscopic analysis and give estimates of the barriers to the two large-amplitude motions.


Assuntos
Hidrogênio/química , Micro-Ondas , Tropolona/análogos & derivados , Ligação de Hidrogênio , Teoria Quântica , Rotação , Tropolona/química
4.
Chemphyschem ; 11(12): 2589-93, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20680935

RESUMO

The microwave spectroscopic signatures of multiple torsional states of the CF(3) internal rotation in benzotrifluoride (alpha,alpha,alpha-trifluorotoluene) are reported. Individual rotational transitions are observed in a total of eight different torsional states, a quite challenging task for heavy tops even with Fourier transform microwave techniques. Accidental mixings of m = 0 and m = 3 torsional states as well as m = 1 and m = 2 torsional states, which can complicate the assignment of the spectra severely, are observed. These accidental mixings are probably systematic for molecules with heavy tops exhibiting an almost free internal rotation, and give an opportunity to determine the sign in the (1/2) V(6) (1+/-cos6tau) potential function hindering internal rotation and in consequence the orientation of the CF(3) top versus C(6)H(5) frame. A recently developed torsion-rotation program reproduces all line positions within an experimental accuracy of about 2.0 kHz. The V(6) barrier is determined to be 3.229949(32) cm(-1). The corresponding torsional spacings are determined with the seven-digit accuracy underlying the supersonic-jet Fourier transform microwave technique.

5.
J Chem Phys ; 125(10): 104312, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16999531

RESUMO

The rotational spectrum of N-acetyl alanine methyl ester, a derivative of the biomimetic, N-acetyl alanine N'-methyl amide or alanine dipeptide, has been measured using a mini Fourier transform spectrometer between 9 and 25 GHz as part of a project undertaken to determine the conformational structures of various peptide mimetics from the torsion-rotation parameters of low-barrier methyl tops. Torsion-rotation splittings from two of the three methyl tops capping the acetyl end of the -NH-C(=O)- and the methoxy end of -C(=O)-O- groups account for most of the observed lines. In addition to the AA state, two E states have been assigned and include an AE state having a torsional barrier of 396.45(7) cm(-1) (methoxy rotor) and an EA state having a barrier of 64.96(4) cm(-1) (acetyl rotor). The observed torsional barriers and rotational constants of alanine dipeptide and its methyl ester are compared with predictions from Möller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT) in an effort to explore systematic errors at the two levels of theory. After accounting for zero-point energy differences, the torsional barriers at the MP2/cc-pVTZ level are in excellent agreement with experiment for the acetyl and methoxy groups while DFT predictions range from 8% to 80% too high or low. DFT is found to consistently overestimate the overall molecular size while MP2 methods give structures that are undersized. Structural discrepancies of similar magnitude are evident in previous DFT results of crystalline peptides.


Assuntos
Alanina/análogos & derivados , Alanina/química , Materiais Biomiméticos/química , Micro-Ondas , Peptídeos/química , Modelos Moleculares , Conformação Molecular , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...