Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 150606, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682979

RESUMO

We report on the first realization of a novel neutral atom qubit encoded in the spin-orbit coupled metastable states ^{3}P_{0} and ^{3}P_{2} of a single ^{88}Sr atom trapped in an optical tweezer. Raman coupling of the qubit states promises rapid single-qubit rotations on par with the fast Rydberg-mediated two-body gates. We demonstrate preparation, readout, and coherent control of the qubit. In addition to driving Rabi oscillations bridging an energy gap of more than 17 THz using a pair of phase-locked clock lasers, we also carry out Ramsey spectroscopy to extract the transverse qubit coherence time T_{2}. When the tweezer is tuned into magic trapping conditions, which is achieved in our setup by tuning the tensor polarizability of the ^{3}P_{2} state via an external control magnetic field, we measure T_{2}=1.2 ms. A microscopic quantum mechanical model is used to simulate our experiments including dominant noise sources. We identify the main constraints limiting the observed coherence time and project improvements to our system in the immediate future. Our Letter opens the door for a so-far-unexplored qubit encoding concept for neutral atom-based quantum computing.

2.
Phys Rev Lett ; 121(21): 213601, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30517813

RESUMO

We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture. Finally, we present first studies of the interspecies interaction between the two species for one mixture.

3.
Phys Rev Lett ; 115(2): 023001, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207465

RESUMO

The formation of ultralong-range Rydberg molecules is a result of the attractive interaction between a Rydberg electron and a polarizable ground-state atom in an ultracold gas. In the nondegenerate case, the backaction of the polarizable atom on the electronic orbital is minimal. Here we demonstrate how controlled degeneracy of the respective electronic orbitals maximizes this backaction and leads to stronger binding energies and lower symmetry of the bound dimers. Consequently, the Rydberg orbitals hybridize due to the molecular bond.

4.
Phys Rev Lett ; 112(14): 143008, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765956

RESUMO

We report on the formation of ultralong-range Rydberg D-state molecules via photoassociation in an ultracold cloud of rubidium atoms. By applying a magnetic offset field on the order of 10 G and high resolution spectroscopy, we are able to resolve individual rovibrational molecular states. A full theory, using a Fermi pseudopotential approach including s- and p-wave scattering terms, reproduces the measured binding energies. The calculated molecular wave functions show that in the experiment we can selectively excite stationary molecular states with an extraordinary degree of alignment or antialignment with respect to the magnetic field axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...