Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 98(1): 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363611

RESUMO

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-ß (Aß) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown. Objective: To evaluate the effects of TS extract (TSE) on neuronal damage, Aß accumulation, and neuroinflammation in AD models. Methods: Thioflavin T and western blot assays were used to assess effects on Aß aggregation in vitro. TS was treated to PC12 cells with Aß to assess the neuroprotective effects. Memory functions and histological brain features were investigated in TSE-treated 5×FAD transgenic mice and mice with intracerebroventricularly injected Aß. Results: TSE disrupted Aß aggregation and increased the viability of cells and phosphorylation of both protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) in vitro. TSE treatment also suppressed the accumulation of Aß plaques in the brain of 5×FAD mice, protected neuronal cells in both the subiculum and medial septum, and upregulated Akt/ERK phosphorylation in the hippocampus. Moreover, TSE ameliorated the memory decline and glial overactivation observed in 5×FAD mice. As assessing whether TS affect Aß-induced neurotoxicity in the Aß-injected mice, the effects of TS on memory improvement and neuroinflammatory inhibition were confirmed. Conclusions: TSE disrupted Aß aggregation, protected neurons against Aß-induced toxicity, and suppressed neuroinflammation, suggesting that it can suppress the development of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sêmen/metabolismo , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 158: 114105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36508997

RESUMO

Alzheimer's disease (AD) is the most common dementia characterized by the excessive accumulation of amyloid-beta (Aß) and tau aggregates, as well as neuronal damage and neuroinflammation. Metabolic disruption in AD has been noticed because metabolite alterations closely correlate with Aß neuropathology and behavioral phenotypes. Accordingly, controlling various neuropathological processes and metabolic disruption is an efficient therapeutic strategy for AD treatment. In this study, we evaluated the effects of a combination of Cuscuta seeds and Lactobacillus paracasei NK112 (CCL01) on AD neuropathology and altered metabolism in five familial AD (5xFAD) transgenic mice and neuronal cell cultures. First, we observed that CCL01 exerted neuroprotective effects in HT22 hippocampal neurons and primary cultured neurons. CCL01 ameliorated memory decline and protected synapses and neuronal survival in 5xFAD mice. These effects were related to the inhibition of tau phosphorylation. CCL01 also inhibited the activation of mitogen-activated protein kinase (MAPK) signaling and neuroinflammatory processes. Moreover, the metabolite profile-particularly characterized by altered phospholipid metabolism-was significantly changed in the 5xFAD group, while CCL01 partly restored the alteration. Lysophosphatidylcholine (lysoPC), the levels of which were higher in the brains of 5xFAD mice, exerted neurotoxicity in vitro, whereas CCL01 protected neurons from lysoPC-induced toxicity by regulating MAPK signaling. Additionally, CCL01 administration reduced gut inflammation in the 5xFAD mice. In summary, we demonstrated that CCL01 improved the memory function of 5xFAD mice by protecting neurons against Aß- and lysoPC-induced toxicity through the regulation of MAPK signaling, neuroinflammation, tau phosphorylation, and gut inflammation, suggesting the potential of CCL01 as treatment for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
3.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430493

RESUMO

Neuroinflammation, a key pathological contributor to various neurodegenerative diseases, is mediated by microglial activation and subsequent secretion of inflammatory cytokines via the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, neuroinflammation leads to synaptic loss and memory impairment. This study investigated the inhibitory effects of PNP001, a mixture of Trichosanthis Semen and Zingiberis Rhizoma in a ratio of 3:1, on neuroinflammation and neurological deficits induced by lipopolysaccharide (LPS). For the in vitro study, PNP001 was administered in LPS-stimulated BV2 microglial cells, and reduced the pro-inflammatory mediators, such as nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 by downregulating MAPK signaling. For the in vivo study, ICR mice were orally administered PNP001 for 18 consecutive days, and concurrently treated with LPS (1 mg/kg, i.p.) for 10 days, beginning on the 4th day of PNP001 administration. The remarkably decreased number of activated microglial cells and increased expression of pre- and post-synaptic proteins were observed more in the hippocampus of the PNP001 administered groups than in the LPS-treated group. Furthermore, daily PNP001 administration significantly attenuated long-term memory decline compared with the LPS-treated group. Our study demonstrated that PNP001 inhibits LPS-induced neuroinflammation and its associated memory dysfunction by alleviating microglial activation and synaptic loss.


Assuntos
Lipopolissacarídeos , Sêmen , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Sêmen/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...