Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39199452

RESUMO

Flexible pulse-by-pulse regulation of sensorimotor synchronization is crucial for voluntarily showing rhythmic behaviors synchronously with external cueing; however, the underpinning neurophysiological mechanisms remain unclear. We hypothesized that the dorsal anterior cingulate cortex (dACC) plays a key role by coordinating both proactive and reactive motor outcomes based on contextual mental imagery. To test our hypothesis, a missing-oddball task in finger-tapping paradigms was conducted in 33 healthy young volunteers. The dynamic properties of the dACC were evaluated by event-related deep-brain activity (ER-DBA), supported by event-related potential (ERP) analysis and behavioral evaluation based on signal detection theory. We found that ER-DBA activation/deactivation reflected a strategic choice of motor control modality in accordance with mental imagery. Reverse ERP traces, as omission responses, confirmed that the imagery was contextual. We found that mental imagery was updated only by environmental changes via perceptual evidence and response-based abductive reasoning. Moreover, stable on-pulse tapping was achievable by maintaining proactive control while creating an imagery of syncopated rhythms from simple beat trains, whereas accuracy was degraded with frequent erroneous tapping for missing pulses. We conclude that the dACC voluntarily regulates rhythmic sensorimotor synchronization by utilizing contextual mental imagery based on experience and by creating novel rhythms.

2.
Front Hum Neurosci ; 17: 1239207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034070

RESUMO

Introduction: The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods: A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled "L" or "R," where "L" requests left and "R" requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results: Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion: Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA