Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0223149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600251

RESUMO

Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.


Assuntos
Fagales/genética , Frankia/genética , Oligossacarídeos/genética , Simbiose/genética , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Fagales/crescimento & desenvolvimento , Fagales/microbiologia , Frankia/crescimento & desenvolvimento , Frankia/metabolismo , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Fixação de Nitrogênio/genética , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Transdução de Sinais/genética
2.
New Phytol ; 219(3): 1018-1030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790172

RESUMO

Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia.


Assuntos
Frankia/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Vegetais/microbiologia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Subtilisinas/genética , Contagem de Colônia Microbiana , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Subtilisinas/metabolismo
3.
Science ; 361(6398)2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794220

RESUMO

The root nodule symbiosis of plants with nitrogen-fixing bacteria affects global nitrogen cycles and food production but is restricted to a subset of genera within a single clade of flowering plants. To explore the genetic basis for this scattered occurrence, we sequenced the genomes of 10 plant species covering the diversity of nodule morphotypes, bacterial symbionts, and infection strategies. In a genome-wide comparative analysis of a total of 37 plant species, we discovered signatures of multiple independent loss-of-function events in the indispensable symbiotic regulator NODULE INCEPTION in 10 of 13 genomes of nonnodulating species within this clade. The discovery that multiple independent losses shaped the present-day distribution of nitrogen-fixing root nodule symbiosis in plants reveals a phylogenetically wider distribution in evolutionary history and a so-far-underestimated selection pressure against this symbiosis.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fabaceae , Fixação de Nitrogênio , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Evolução Molecular , Fabaceae/classificação , Fabaceae/genética , Fabaceae/microbiologia , Genoma de Planta , Genômica , Filogenia
4.
Front Plant Sci ; 5: 399, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191330

RESUMO

Nitrogen-fixing nodules induced by Frankia in the actinorhizal plant Discaria trinervis result from a primitive intercellular root invasion pathway that does not involve root hair deformation and infection threads. Here, we analyzed the role of auxin in this intercellular infection pathway at the molecular level and compared it with our previous work in the intracellular infected actinorhizal plant Casuarina glauca. Immunolocalisation experiments showed that auxin accumulated in Frankia-infected cells in both systems. We then characterized the expression of auxin transporters in D. trinervis nodules. No activation of the heterologous CgAUX1 promoter was detected in infected cells in D. trinervis. These results were confirmed with the endogenous D. trinervis gene, DtAUX1. However, DtAUX1 was expressed in the nodule meristem. Consistently, transgenic D. trinervis plants containing the auxin response marker DR5:VENUS showed expression of the reporter gene in the meristem. Immunolocalisation experiments using an antibody against the auxin efflux carrier PIN1, revealed the presence of this transporter in the plasma membrane of infected cells. Finally, we used in silico cellular models to analyse auxin fluxes in D. trinervis nodules. Our results point to the existence of divergent roles of auxin in intercellularly- and intracellularly-infected actinorhizal plants, an ancestral infection pathways leading to root nodule symbioses.

5.
PLoS One ; 8(5): e64515, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741336

RESUMO

Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.


Assuntos
Proteínas de Bactérias/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Cannabaceae/genética , Fabaceae/genética , Frankia/genética , Micorrizas/genética , Proteínas de Plantas/genética , Rhizobium/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Evolução Biológica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cannabaceae/enzimologia , Fabaceae/enzimologia , Frankia/enzimologia , Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Micorrizas/enzimologia , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Rhizobium/enzimologia , Transdução de Sinais , Simbiose , Transdução Genética
6.
Mol Plant Microbe Interact ; 24(11): 1317-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21585269

RESUMO

Among infection mechanisms leading to root nodule symbiosis, the intercellular infection pathway is probably the most ancestral but also one of the least characterized. Intercellular infection has been described in Discaria trinervis, an actinorhizal plant belonging to the Rosales order. To decipher the molecular mechanisms underlying intercellular infection with Frankia bacteria, we set up an efficient genetic transformation protocol for D. trinervis based on Agrobacterium rhizogenes. We showed that composite plants with transgenic roots expressing green fluorescent protein can be specifically and efficiently nodulated by Frankia strain BCU110501. Nitrogen fixation rates and feedback inhibition of nodule formation by nitrogen were similar in control and composite plants. In order to challenge the transformation system, the MtEnod11 promoter, a gene from Medicago truncatula widely used as a marker for early infection-related symbiotic events in model legumes, was introduced in D. trinervis. MtEnod11::GUS expression was related to infection zones in root cortex and in the parenchyma of the developing nodule. The ability to study intercellular infection with molecular tools opens new avenues for understanding the evolution of the infection process in nitrogen-fixing root nodule symbioses.


Assuntos
Agrobacterium/fisiologia , Raízes de Plantas/microbiologia , Rhamnaceae/microbiologia , Simbiose , Medicago truncatula/genética , Fixação de Nitrogênio , Plantas Geneticamente Modificadas , Transformação Genética
7.
Curr Protein Pept Sci ; 12(2): 156-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21348842

RESUMO

Actinorhizal symbioses are mutualistic associations between plants belonging to eight angiosperm families and soil bacteria of the genus Frankia. These interactions lead to the formation of new root organs, actinorhizal nodules, where the bacteria are hosted and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. It involves an elaborate signaling between both partners of the symbiosis. In recent years, our knowledge of this signaling pathway has increased tremendously thanks to a series of technical breakthroughs including the sequencing of three Frankia genomes [1] and the implementation of RNA silencing technology for two actinorhizal species. In this review, we describe all these recent advances, current researches on symbiotic signaling in actinorhizal symbioses and give some potential future research directions.


Assuntos
Frankia/crescimento & desenvolvimento , Transdução de Sinais , Simbiose/fisiologia , Frankia/genética , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Interferência de RNA , Simbiose/genética
8.
Biotechnol Lett ; 29(8): 1217-20, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17530182

RESUMO

Two new compounds, 2',3'-di-O-ethoxycarbonyluridine and 2',3'-di-O-ethoxycarbonylinosine, were obtained through a Candida antarctica lipase B catalysed regioselective ethanolysis of the corresponding trialcoxycarbonylated nucleosides with benzyl alcohol in 1,4-dioxane at 30 degrees C.


Assuntos
Álcoois/química , Candida/enzimologia , Biologia Computacional/métodos , Nucleosídeos/química , Catálise , Dioxanos/química , Enzimas/química , Proteínas Fúngicas , Lipase/química , Modelos Químicos , Estereoisomerismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...