Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672344

RESUMO

No standard treatment has been established for most rare cancers. Here, we report a clinical trial of a biweekly WT1 tri-peptide-based vaccine for recurrent or advanced rare cancers. Due to the insufficient number of patients available for a traditional clinical trial, the trial was designed for rare cancers expressing shared target molecule WT1. The recruitment criteria included WT1-expressing tumors as well as HLA-A*24:02 or 02:01. The primary endpoints were immunoglobulin G (IgG) antibody (Ab) production against the WT1-235 cytotoxic T lymphocyte (CTL) epitope and delayed-type hypersensitivity (DTH) skin reactions to targeted WT1 CTL epitopes. The secondary endpoints were safety and clinical efficacy. Forty-five patients received WT1 Trio, and 25 (55.6%) completed the 3-month protocol treatment. WT1-235 IgG Ab was positive in 88.0% of patients treated with WT1 Trio at 3 months, significantly higher than 62.5% of the weekly WT1-235 CTL peptide vaccine. The DTH positivity rate in WT1 Trio was 62.9%, which was not significantly different from 60.7% in the WT1-235 CTL peptide vaccine. The WT1 Trio safety was confirmed without severe treatment-related adverse events, except grade 3 myasthenia gravis-like symptoms observed in a patient with thymic cancer. Fifteen (33.3%) patients achieved stable disease after 3 months of treatment. In conclusion, the biweekly WT1 Trio vaccine containing the WT1-332 helper T lymphocyte peptide induced more robust immune responses targeting WT1 than the weekly WT1-235 CTL peptide vaccine. Therefore, WT1-targeted immunotherapy may be a potential therapeutic strategy for rare cancers.

2.
Mol Clin Oncol ; 16(3): 74, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35251625

RESUMO

The Wilms tumor 1 gene, WT1, is overexpressed in various types of cancer, including gastric cancer. The product of WT1 is highly immunogenic and is a promising target molecule for cancer immunotherapy. The current study aimed to examine the production of WT1-specific IgG and IgM autoantibodies to identify biomarkers of diagnostic value in patients with gastric cancer. IgG antibodies that bind to WT1-derived peptides were obtained, the serum levels of which correlate with those of IgG antibodies against the WT1 protein in patients with intestinal malignancies. The serum levels of IgG and IgM antibodies against the WT1-271 peptide (271-288 amino acids) were examined in 39 healthy individuals and 97 patients with gastric cancer. The positivity cutoff value was determined according to the receiver operating characteristic curve. The association between WT1-271 IgM and the clinicopathological factors and prognosis of patients was additionally analyzed. The results revealed that serum WT1-271 IgM antibody levels in patients with gastric cancer were significantly higher than those in healthy individuals. The sensitivity and specificity of this antibody for gastric cancer were 67.0 and 71.8%, respectively; this sensitivity was improved when compared with conventional tumor markers (P<0.001). There was no statistical difference in WT1-271 IgG antibody levels between patients with gastric cancer and healthy individuals. Serum WT1-271 IgM antibody levels were not significantly associated with clinicopathological factors but were associated with unfavorable prognosis. Serum WT1-271 IgM antibody levels could serve as a diagnostic biomarker in patients with gastric cancer.

3.
Oncol Lett ; 23(2): 65, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35069874

RESUMO

The Wilms' tumor gene WT1 is highly expressed in various malignancies and may be a common target antigen for cancer immunotherapy. In our group, peptide-based cancer vaccines targeting WT1 CTL epitopes were developed as an immunotherapy for these malignancies. In the present study, WT1 epitope-specific immune responses were analyzed in 31 patients with advanced sarcoma with human leukocyte antigen-A*24:02- and WT1-expressing tumors who received the WT1-235 peptide vaccine as monotherapy. The serum levels of IgG and IgM antibodies against the target epitope WT1-235 and the non-target epitopes WT1-332 and WT1-271 were measured using ELISA. IgM antibodies against WT1-235, WT1-332 and WT1-271 were detected in three (9.6%), four (12.9%) and 20 patients (64.5%), respectively, prior to vaccine administration, indicating immune recognition of the WT1 antigen prior to administering the vaccine. Of 15 patients who had completed the 3-month treatment protocol, WT1-235 IgG was positive in five (33.3%) patients. An enzyme-linked immunospot assay revealed that WT1-235 epitope-specific IL-10 production/secretion in peripheral blood mononuclear cells declined in the first month of vaccine administration in all three patients with positivity for WT1-235 IgM at the start of the vaccine. Furthermore, positivity for both WT1-235 and WT1-271 IgM antibodies at the start of treatment was associated with unfavorable tumor control at 3 months after vaccine administration. These results suggested that WT1 epitope-specific IgG and IgM antibodies may be utilized as immune-monitoring markers for WT1 peptide cancer vaccine immunotherapy. The trials were entered in the University hospital Medical Information Network (UMIN) Clinical Trials Registry (https://www.umin.ac.jp/ctr; no. UMIN000002001 on May 24, 2009 and no. UMIN000015997 on December 20, 2014).

4.
Biomed Rep ; 12(5): 244-250, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32257187

RESUMO

Cancer vaccine immunotherapy is a therapy that induces cellular immune responses against a target molecule to elicit clinical anti-tumor effects. These cellular immune responses against the target molecule are monitored to evaluate whether the antigen-specific cellular immune responses are induced and maintained during the vaccination period. Enzyme-linked immunospot (ELISPOT) assay is widely performed to analyze not only the frequency of immune cells, but also their effector functions as determined by their cytokine production/secretion. The present study aimed to develop a reader-free ELISPOT assay using a handy membrane-punching device termed ELI 8. With the assistance of particle analysis by ImageJ software, the results of spot counting were reproducible with high inter-assay and inter-examiner concordance. Immune cells that produce and secrete Th1 cytokines without antigen-peptide stimulation of peripheral blood mononuclear cells (PBMCs) were detected, and their frequencies in patients with cancer were significantly higher compared with those in healthy individuals. These frequencies varied between individuals, as well as between time points during the course of cancer vaccine immunotherapy in each patient. Due to the variability in spontaneous cytokine production/secretion by PBMCs, an antigen-specific immune response (IR) index is proposed, which is a ratio of the number of spot-forming cells (SFCs) subjected to antigen-stimulation to that of SFCs with spontaneous cytokine secretion without antigen-stimulation. This index may be used as a marker for antigen-specific cellular immune responses in patients treated with cancer immunotherapy. The IR index successfully detected the induction of Wilms' tumor 1-specific cellular immune responses in patients with cancer treated with cancer vaccine immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...