Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636661

RESUMO

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Assuntos
Ceramidas , Receptores de Adiponectina , Retina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Ceramidas/metabolismo , Retina/metabolismo , Retina/patologia , Camundongos Knockout , Ácidos Graxos Insaturados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética
2.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648465

RESUMO

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Rodopsina , Animais , Rodopsina/metabolismo , Rodopsina/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Cílios/metabolismo , Cílios/patologia
3.
Biology (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138817

RESUMO

Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development.

4.
Proc Natl Acad Sci U S A ; 119(15): e2200068119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394870

RESUMO

Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme ß-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.


Assuntos
Carotenoides , Macula Lutea , Proteínas de Membrana , Animais , Transporte Biológico , Carotenoides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Macula Lutea/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
5.
Exp Eye Res ; 206: 108530, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675778

RESUMO

Noninvasive in vivo imaging of the mouse retina is essential for eye research. However, imaging the mouse fundus is challenging due to its small size and requires specialized equipment, maintenance, and training. These issues hinder the routine evaluation of the mouse retina. In this study, we developed a noncontact imaging system consisting of a smartphone, a 90D condensing lens, a homemade light diaphragm, a tripod, and a Bluetooth remote. With minimal training, examiners were able to capture fundus images from the mouse retina. We also found that fundus images captured using our system from wild type mice, mice with laser-induced retinal injury, and a mouse model of retinitis pigmentosa showed a quality similar to those captured using a commercial fundus camera. These images enabled us to identify normal structures and pathological changes in the mouse retina. Additionally, fluorescein angiography was possible with the smartphone system. We believe that the smartphone imaging system is low cost, simple, accessible, easy to operate, and suitable for the routine screening and examination of the mouse eye.


Assuntos
Angiofluoresceinografia/métodos , Oftalmoscopia/métodos , Doenças Retinianas/diagnóstico , Smartphone , Animais , Fundo de Olho , Camundongos , Retina
6.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32376599

RESUMO

Rhodopsin is mislocalized to the inner segment plasma membrane (IS PM) in various blinding disorders including autosomal-dominant retinitis pigmentosa caused by class I rhodopsin mutations. In these disorders, rhodopsin-laden microvesicles are secreted into the extracellular milieu by afflicted photoreceptor cells. Using a Xenopus laevis model expressing class I mutant rhodopsin or Na+/K+-ATPase (NKA) fused to Dendra2, we fluorescently labeled the microvesicles and found retinal pigment epithelial (RPE) cells are capable of engulfing microvesicles containing rhodopsin. A unique sorting mechanism allows class I mutant rhodopsin, but not NKA, to be packaged into the microvesicles. Under normal physiological conditions, NKA is not shed as microvesicles to the extracellular space, but is degraded intracellularly. Those studies provide novel insights into protein homeostasis in the photoreceptor IS PM.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Animais , Mutação , Rodopsina/genética , Xenopus laevis
7.
Annu Rev Vis Sci ; 5: 73-98, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31226015

RESUMO

Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein-coupled receptor-mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.


Assuntos
Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Humanos , Transdução de Sinais , Visão Ocular
8.
J Neurosci ; 39(28): 5581-5593, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31061086

RESUMO

Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.


Assuntos
Membrana Celular/metabolismo , Homeostase , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Animais , Autofagossomos/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Rodopsina/genética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Xenopus laevis
9.
FASEB J ; 33(3): 3680-3692, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30462532

RESUMO

Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.


Assuntos
Neuroglia/patologia , Fagocitose/fisiologia , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Animais , Modelos Animais de Doenças , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retinose Pigmentar/patologia
10.
Nat Chem Biol ; 12(6): 444-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27110679

RESUMO

Usher syndrome type III (USH3), characterized by progressive deafness, variable balance disorder and blindness, is caused by destabilizing mutations in the gene encoding the clarin-1 (CLRN1) protein. Here we report a new strategy to mitigate hearing loss associated with a common USH3 mutation CLRN1(N48K) that involves cell-based high-throughput screening of small molecules capable of stabilizing CLRN1(N48K), followed by a secondary screening to eliminate general proteasome inhibitors, and finally an iterative process to optimize structure-activity relationships. This resulted in the identification of BioFocus 844 (BF844). To test the efficacy of BF844, we developed a mouse model that mimicked the progressive hearing loss associated with USH3. BF844 effectively attenuated progressive hearing loss and prevented deafness in this model. Because the CLRN1(N48K) mutation causes both hearing and vision loss, BF844 could in principle prevent both sensory deficiencies in patients with USH3. Moreover, the strategy described here could help identify drugs for other protein-destabilizing monogenic disorders.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana/antagonistas & inibidores , Pirazóis/farmacologia , Piridazinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Síndromes de Usher/tratamento farmacológico , Animais , Ensaios de Triagem em Larga Escala , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Pirazóis/uso terapêutico , Piridazinas/síntese química , Piridazinas/química , Piridazinas/uso terapêutico , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Síndromes de Usher/genética
11.
Invest Ophthalmol Vis Sci ; 57(3): 866-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943149

RESUMO

PURPOSE: The purpose of this study was to obtain an Usher syndrome type III mouse model with retinal phenotype. METHODS: Speed congenic method was used to obtain Clrn1 exon 1 knockout (Clrn1-/-) and Clrn1N48K knockin (Clrn1N48K/N48K) mice under A/J background. To study the retinal functions of these mice, we measured scotopic and photopic ERG responses. To observe if there are any structural abnormalities, we conducted light and transmission electron microscopy of fixed retinal specimens. RESULTS: In 3-month-old Clrn1-/- mice, scotopic b-wave amplitude was reduced by more than 25% at the light intensities from -2.2 to 0.38 log cd·s/m2, but scotopic a-wave amplitudes were comparable to those of age-matched wild type mice at all the light intensities tested. In 9-month-old Clrn1-/- mice, scotopic b-wave amplitudes were further reduced by more than 35%, and scotopic a-wave amplitude also showed a small decline as compared with wild type mice. Photopic ERG responses were comparable between Clrn1-/- and wild type mice. Those electrophysiological defects were not associated with a loss of rods. In Clrn1N48K/N48K mice, both a- and b-wave amplitudes were not discernable from those of wild type mice aged up to 10 months. CONCLUSIONS: Mutations that are Clrn1-/- biallelic cause visual defects when placed under A/J background. The absence of apparent rod degeneration suggests that the observed phenotype is due to functional defects, and not due to loss of rods. Biallelic Clrn1N48K/N48K mutations did not cause discernible visual defects, suggesting that Clrn1- allele is more severely dysfunctional than ClrnN48K allele.


Assuntos
Visão de Cores/fisiologia , Adaptação à Escuridão/fisiologia , Proteínas de Membrana/genética , Mutação , Retina/fisiopatologia , Síndromes de Usher/fisiopatologia , Transtornos da Visão/etiologia , Animais , DNA/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Eletrorretinografia , Genótipo , Immunoblotting , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Retina/ultraestrutura , Síndromes de Usher/complicações , Síndromes de Usher/genética , Transtornos da Visão/metabolismo , Transtornos da Visão/fisiopatologia
12.
Photochem Photobiol Sci ; 14(10): 1787-806, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26345171

RESUMO

In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.


Assuntos
Células/citologia , Luz , Proteínas Luminescentes/metabolismo , Animais , Técnicas Biossensoriais , Células/metabolismo , Células/efeitos da radiação , Humanos , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação
13.
J Physiol ; 593(22): 4923-41, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26350353

RESUMO

KEY POINTS: This study explores the molecular mechanisms that regulate the recycling of chromophore required for pigment regeneration in mammalian cones. We report that two chromophore binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter (ABCA4) accelerate the dark adaptation of cones, first, directly, by facilitating the processing of chromophore in cones, and second, indirectly, by accelerating the turnover of chromophore in rods, which is then recycled and delivered to both rods and cones. Preventing competition with the rods by knocking out rhodopsin accelerated cone dark adaptation, demonstrating the interplay between rod and cone pigment regeneration driven by the retinal pigment epithelium (RPE). This novel interdependence of rod and cone pigment regeneration should be considered when developing therapies targeting the recycling of chromophore for rods, and evaluating residual cone function should be a critical test for such regimens targeting the RPE. ABSTRACT: Rapid recycling of visual chromophore and regeneration of the visual pigment are critical for the continuous function of mammalian cone photoreceptors in daylight vision. However, the molecular mechanisms modulating the supply of visual chromophore to cones have remained unclear. Here we explored the roles of two chromophore-binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter 4 (ABCA4), in dark adaptation of mammalian cones. We report that young adult RDH8/ABCA4-deficient mice have normal M-cone morphology but reduced visual acuity and photoresponse amplitudes. Notably, the deletion of RDH8 and ABCA4 suppressed the dark adaptation of M-cones driven by both the intraretinal visual cycle and the retinal pigmented epithelium (RPE) visual cycle. This delay can be caused by two separate mechanisms: direct involvement of RDH8 and ABCA4 in cone chromophore processing, and an indirect effect from the delayed recycling of chromophore by the RPE due to its slow release from RDH8/ABCA4-deficient rods. Intriguingly, our data suggest that RDH8 could also contribute to the oxidation of cis-retinoids in cones, a key reaction of the retina visual cycle. Finally, we dissected the roles of rod photoreceptors and RPE for dark adaptation of M-cones. We found that rods suppress, whereas RPE promotes, cone dark adaptation. Thus, therapeutic approaches targeting the RPE visual cycle could have adverse effects on the function of cones, making the evaluation of residual cone function a critical test for regimens targeting the RPE.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adaptação Fisiológica , Oxirredutases do Álcool/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Oxirredutases do Álcool/genética , Animais , Linhagem Celular , Luz , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Acuidade Visual
14.
Prog Mol Biol Transl Sci ; 132: 39-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26055054

RESUMO

Rhodopsin is a seven-transmembrane G protein-coupled receptor (GPCR) and is the main component of the photoreceptor outer segment (OS), a ciliary compartment essential for vision. Because the OSs are incapable of protein synthesis, rhodopsin must first be synthesized in the inner segments (ISs) and subsequently trafficked across the connecting cilia to the OSs where it participates in the phototransduction cascade. Rapid turnover of the OS necessitates a high rate of synthesis and efficient trafficking of rhodopsin to the cilia. This cilia-targeting mechanism is shared among other ciliary-localized GPCRs. In this review, we will discuss the process of rhodopsin trafficking from the IS to the OS beginning with the trafficking signals present on the protein. Starting from the endoplasmic reticulum and the Golgi apparatus within the IS, we will cover the molecular components assisting the biogenesis and the proper sorting. We will also review the confirmed binding and interacting partners that help target rhodopsin toward the connecting cilium as well as the cilia-localized components which direct proteins into the proper compartments of the OS. While rhodopsin is the most critical and abundant component of the photoreceptor OS, mutations in the rhodopsin gene commonly lead to its mislocalization within the photoreceptors. In addition to covering the trafficking patterns of rhodopsin, we will also review some of the most common rhodopsin mutants which cause mistrafficking and subsequent death of photoreceptors. Toward the goal of understanding the pathogenesis, three major mechanisms of aberrant trafficking as well as putative mechanisms of photoreceptor degeneration will be discussed.


Assuntos
Transporte Proteico , Rodopsina/metabolismo , Transdução de Sinais , Animais , Arrestinas/metabolismo , Transporte Biológico , Cílios/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transdução de Sinal Luminoso , Camundongos , Mutação , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Degeneração Retiniana/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
15.
Methods Mol Biol ; 1271: 293-307, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25697531

RESUMO

Outer segment (OS) directed trafficking is required for accomplishing the extremely high concentration of rhodopsin and explicitly high photon sensitivity of rod photoreceptor cells. Aberrant targeting of rhodopsin often leads to blinding disorders, due to various mechanisms causing rhodopsin mislocalization. Until recently, it has been challenging to monitor the dynamics of rhodopsin biogenesis and trafficking. Here, we describe a new method to visualize rhodopsin trafficking in living and unfixed Xenopus laevis rod photoreceptors. By harnessing the photochemical property of a photoconvertible fluorescent protein Dendra2, it is now possible to encode temporal information into colors and resolve spatiotemporal distribution of rhodopsin-Dendra2 fusion proteins in individual rod photoreceptors.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Animais , Microscopia Confocal , Transporte Proteico/fisiologia , Rodopsina/química , Xenopus laevis
16.
J Neurosci ; 34(24): 8164-74, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920621

RESUMO

The photoreceptor outer segment (OS) is comprised of two compartments: plasma membrane (PM) and disk membranes. It is unknown how the PM renewal is coordinated with that of the disk membranes. Here we visualized the localization and trafficking process of rod cyclic nucleotide-gated channel α-subunit (CNGA1), a PM component essential for phototransduction. The localization was visualized by fusing CNGA1 to a fluorescent protein Dendra2 and expressing in Xenopus laevis rod photoreceptors. Dendra2 allowed us to label CNGA1 in a spatiotemporal manner and therefore discriminate between old and newly trafficked CNGA1-Dendra2 in the OS PM. Newly synthesized CNGA1 was preferentially trafficked to the basal region of the lateral OS PM where newly formed and matured disks are also added. Unique trafficking pattern and diffusion barrier excluded CNGA1 from the PM domains, which are the proposed site of disk membrane maturation. Such distinct compartmentalization allows the confinement of cyclic nucleotide-gated channel in the PM, while preventing the disk membrane incorporation. Cytochalasin D and latrunculin A treatments, which are known to disrupt F-actin-dependent disk membrane morphogenesis, prevented the entrance of newly synthesized CNGA1 to the OS PM, but did not prevent the entrance of rhodopsin and peripherin/rds to the membrane evaginations believed to be disk membrane precursors. Uptake of rhodopsin and peripherin/rds coincided with the overgrowth of the evaginations at the base of the OS. Thus F-actin is essential for the trafficking of CNGA1 to the ciliary PM, and coordinates the formations of disk membrane rim region and OS PM.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Morfogênese/fisiologia , Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Animais , Animais Geneticamente Modificados , Membrana Celular/ultraestrutura , Quelantes/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Endopeptidases/farmacologia , Técnicas In Vitro , Larva , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Morfogênese/genética , Fotodegradação , Transporte Proteico/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Rodopsina/genética , Rodopsina/metabolismo , Xenopus
17.
J Comp Neurol ; 522(16): 3577-3589, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24855015

RESUMO

Photoreceptor outer segments (OSs) are essential for our visual perception, and take either rod or cone forms. The cell biological basis for the formation of rods is well established; however, the mechanism of cone formation is ill characterized. While Xenopus rods are called rods, they exhibit cone-shaped OSs during the early process of development. To visualize the dynamic reorganization of disk membranes, opsin and peripherin/rds were fused to a fluorescent protein, Dendra2, and expressed in early developing rod photoreceptors, in which OSs are still cone-shaped. Dendra2 is a fluorescent protein which can be converted from green to red irreversibly, and thus allows spatiotemporal labeling of proteins. Using a photoconversion technique, we found that disk membranes are assembled at the base of cone-shaped OSs. After incorporation into disks, however, Opsin-Dendra2 was also trafficked from old to new disk membranes, consistent with the hypothesis that retrograde trafficking of membrane components contributes to the larger disk membrane observed toward the base of the cone-shaped OS. Such retrograde trafficking is cargo-specific and was not observed for peripherin/rds-Dendra2. The trafficking is unlikely mediated by diffusion, since the disk membranes have a closed configuration, as evidenced by CNGA1 labeling of the plasma membrane. Consistent with retrograde trafficking, the axoneme, which potentially mediates retrograde intraflagellar trafficking, runs through the entire axis of OSs. This study provides an insight into the role of membrane reorganization in developing photoreceptor OSs, and proves that retrograde trafficking of membrane cargoes can occur there.


Assuntos
Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Opsinas de Bastonetes/metabolismo , Fatores Etários , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Peso Molecular , Técnicas de Cultura de Órgãos , Transporte Proteico/fisiologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/citologia , Fatores de Tempo , Xenopus laevis
18.
J Neurosci ; 34(3): 992-1006, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431457

RESUMO

It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When expressed in ciliated hTERT-RPE1 human cell line, P/rd is localized to cilia. Cilium trafficking of P/rds was sustained even when the Golgi functions, including trans-Golgi-mediated conventional secretion, were inhibited by the small molecules brefeldin A, 30N12, and monensin. The unconventional cilia targeting of P/rds is dependent on COPII-mediated exit from the ER, but appears to be independent of GRASP55-mediated secretion. The regions in the C-terminal tail of P/rds are essential for this unconventional trafficking. In the absence of the region required for cilia targeting, P/rds was prohibited from entering the secretory pathways and was retained in the Golgi apparatus. A region essential for this Golgi retention was also found in the C-terminal tail of P/rds and supported the cilia targeting of P/rds mediated by unconventional secretion. In ciliated cells, including bovine and Xenopus laevis rod photoreceptors, P/rds was robustly sensitive to endoglycosidase H, which is consistent with its bypassing the medial Golgi and traversing the unconventional secretory pathway. Because rhodopsin is known to traffic through conventional secretion, this study of P/rds suggests that both conventional secretion and unconventional secretion need to cooperate for the renewal of the photoreceptor sensory cilium.


Assuntos
Cílios/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Via Secretória/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Bovinos , Linhagem Celular , Cílios/genética , Humanos , Periferinas/genética , Transporte Proteico/fisiologia , Xenopus laevis
19.
Channels (Austin) ; 8(6): 528-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25616687

RESUMO

A diffusion barrier segregates the plasma membrane of the rod photoreceptor outer segment into 2 domains; one which is optimized for the conductance of ions in the phototransduction cascade and another for disk membrane synthesis. We propose the former to be named "phototransductive plasma membrane domain," and the latter to be named "disk morphogenic plasma membrane domain." Within the phototransductive plasma membrane, cGMP-gated channels are concentrated in striated membrane features, which are proximally located to the sites of active cGMP production within the disk membranes. For proper localization of cGMP-gated channel to the phototransductive plasma membrane, the glutamic acid-rich protein domain encoded in the ß subunit plays a critical role. Quantitative study suggests that the disk morphogenic domain likely plays an important role in enriching rhodopsin prior to its sequestration into closed disk membranes. Thus, this and our previous studies provide new insight into the mechanism that spatially organizes the vertebrate phototransduction cascade.


Assuntos
CMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sinalização do Cálcio , Bovinos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Humanos , Dados de Sequência Molecular , Ligação Proteica , Sinais Direcionadores de Proteínas , Subunidades Proteicas/metabolismo , Transporte Proteico , Xenopus
20.
J Neurosci ; 33(34): 13621-38, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966685

RESUMO

Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoconversion of Dendra2 causes a color change from green to red, enabling visualization of the dynamic events associated with rhodopsin trafficking and renewal. We found that rhodopsin mislocalization is a facilitated process for which a signal located within 322-326 aa (CCGKN) is essential. An additional signal within 327-336 aa further facilitated the mislocalization. This collective mistrafficking signal confers toxicity to rhodopsin and causes mislocalization when the VXPX cilia-targeting motif is absent. We also determined that the VXPX motif neutralizes this mistrafficking signal, enhances ciliary targeting at least 10-fold, and accelerates trafficking of post-Golgi vesicular structures. In the absence of the VXPX motif, mislocalized rhodopsin is actively cleared through secretion of vesicles into the extracellular milieu. Therefore, this study unveiled the multiple roles of trafficking signals in rhodopsin localization and renewal.


Assuntos
Transporte Proteico/genética , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Anuros , Olho/anatomia & histologia , Feminino , Regulação da Expressão Gênica/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Modelos Moleculares , Mutação/genética , Técnicas de Cultura de Órgãos , Estimulação Luminosa , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Retina/citologia , Retina/metabolismo , Retina/ultraestrutura , Rodopsina/genética , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...