Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 383(2): 195-206, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19027925

RESUMO

Expression of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV) in the human thyroid papillary carcinoma cell line TPC-1 is repressed at the transcriptional level. However, treatment of these cells with hexamethylene bisacetamide (HMBA), a chemical inducer of differentiation, for 12 to 24 h before infection enabled the cells to support IE1 and IE2 gene expression and consequently HCMV replication. In HMBA-treated cells the transcription factor NF-kappaB was induced and the MIE promoter (MIEP) was activated. The presence of a NF-kappaB inhibitory peptide SN-50 or expression of a dominant negative IkappaBalpha protein during the HMBA pretreatment period efficiently prevented the HMBA-induced MIEP activation and MIE protein synthesis. Moreover, introduction of mutations into the NF-kappaB binding sites in the MIEP in a plasmid expressing the IE1 protein diminished its ability to express the protein in HMBA-treated cells. Therefore, the NF-kappaB activity previously induced in HMBA-treated cells and the NF-kappaB sites in the MIEP were shown to be essential for HCMV to respond to HMBA action and to express the MIE genes. Investigation of the mechanisms by which HMBA activates NF-kappaB revealed that degradation of IkappaBalpha and translocation of the phosphorylated NF-kappaB p65 subunit to the nucleus, both of which are known to be critical steps in NF-kappaB activation, are stimulated in the HMBA-treated cells. These results indicate that treatment of nonpermissive TPC-1 cells with HMBA induces MIE gene permissiveness by up-regulating NF-kappaB activity.


Assuntos
Acetamidas/farmacologia , Citomegalovirus/fisiologia , Proteínas Imediatamente Precoces/biossíntese , Fatores Imunológicos/farmacologia , NF-kappa B/metabolismo , Transativadores/biossíntese , Replicação Viral , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos
2.
J Biol Chem ; 281(7): 3936-42, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16361698

RESUMO

The homotrimeric heat shock transcription factor (HSF) binds to the heat shock element of target genes and regulates transcription in response to various stresses. The Hsf1 protein of Saccharomyces cerevisiae is extensively phosphorylated upon heat shock; a modification that is under positive regulation by its C-terminal regulatory domain (CTM). Hyperphosphorylation has been implicated in gene-specific transcriptional activation. Here, we surveyed genes whose heat shock response is reduced by a CTM mutation. The CTM is indispensable for transcription via heat shock elements bound by a single Hsf1 trimer but is dispensable for transcription via heat shock elements bound by Hsf1 trimers in a cooperative manner. Intragenic mutations located within or near the wing region of the winged helix-turn-helix DNA-binding domain suppress the temperature-sensitive growth phenotype associated with the CTM mutation and enable Hsf1 to activate transcription independently of hyperphosphorylation. Deletion of the wing partially restores the transcriptional defects of the unphosphorylated Hsf1. These results demonstrate a functional link between hyperphosphorylation and the wing region and suggest that this modification is involved in a conformational change of a single Hsf1 trimer to an active form.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Ativação Transcricional , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Dados de Sequência Molecular , Mutação , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
3.
Eukaryot Cell ; 4(6): 1050-6, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15947197

RESUMO

The heat shock transcription factor Hsf1 of the yeast Saccharomyces cerevisiae regulates expression of genes encoding heat shock proteins and a variety of other proteins as well. To better understand the cellular roles of Hsf1, we screened multicopy suppressor genes of a temperature-sensitive hsf1 mutation. The RIM15 gene, encoding a protein kinase that is negatively regulated by the cyclic AMP-dependent protein kinase, was identified as a suppressor, but Rim15-regulated stress-responsive transcription factors, such as Msn2, Msn4, and Gis1, were unable to rescue the temperature-sensitive growth phenotype of the hsf1 mutant. Another class of suppressors encoded cell wall stress sensors, Wsc1, Wsc2, and Mid2, and the GDP/GTP exchange factor Rom2 that interacts with these cell wall sensors. Activation of a protein kinase, Pkc1, which is induced by these cell wall sensor proteins upon heat shock, but not activation of the Pkc1-regulated mitogen-activated protein kinase cascade, was necessary for the hsf1 suppression. Like Wsc-Pkc1 pathway mutants, hsf1 cells exhibited an osmotic remedial cell lysis phenotype at elevated temperatures. Several of the other suppressors were found to encode proteins functioning in cell wall organization. These results suggest that Hsf1 in concert with Pkc1 regulates cell wall remodeling in response to heat shock.


Assuntos
Parede Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Supressores , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Choque Térmico/genética , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Mutação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
Antivir Chem Chemother ; 16(2): 135-46, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15889536

RESUMO

The effect of geldanamycin (GA), a specific inhibitor of heat shock protein 90 (Hsp90), on gene expression and replication of human cytomegalovirus (HCMV) was studied in human embryonic lung (HEL) fibroblasts. Kinetic analysis indicated that GA delayed synthesis of major immediate early (MIE), early and late viral proteins, and blocked a second tier of the synthesis of these proteins that occurred in untreated cells after 48 h post-infection (pi). Moreover, when HCMV-infected HEL cells were maintained with medium containing 40 nM GA for 6 days, with medium changes at 2-day intervals, the virus yield was reduced to an undetectable level. On a molecular level, the cellular kinase Akt and the transcription factor NFkappaB were activated in HCMV-infected cells within 30 min pi. NFkappaB was shown to be essential for MIE gene expression. However, in GA-treated cells, activation of both Akt and NFkappaB was greatly inhibited. Because LY294002, an inhibitor of cellular phosphatidylinositol 3-kinase (PI3-K), also prohibited HCMV-mediated activation of Akt and NFkappaB and synthesis of the MIE proteins, PI3-K signalling was necessary for expressing the MIE genes. These results suggest that the inhibitory effect of GA on HCMV replication is primarily caused by the disruption of the PI3-K signalling pathway, leading to the activation of NFkappaB, which plays a crucial role in expression of the critical MIE genes.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Quinonas/farmacologia , Replicação Viral/efeitos dos fármacos , Benzoquinonas , Células Cultivadas , Citomegalovirus/metabolismo , Proteínas de Choque Térmico HSP90 , Humanos , Proteínas Imediatamente Precoces/biossíntese , Lactamas Macrocíclicas , Pulmão/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Transativadores/biossíntese , Quinase Induzida por NF-kappaB
5.
Genes Cells ; 8(12): 951-61, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14750950

RESUMO

BACKGROUND: Phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is implicated in transition from initiation to elongation in the transcription cycle. In yeast cells, Kin28, a subunit of the general transcription factor TFIIH, is responsible for the CTD phosphorylation. Although Kin28 is indispensable for transcription of many genes, its requirement is bypassed in certain genes such as SSA4 or CUP1, whose transcription is activated by the heat shock factor Hsf1. RESULTS: We show that C-terminal region of Hsf1, which consists of an activation domain AR2 and a regulatory domain CTM, mediates the Kin28-independent transcription. The AR2 domain, when fused to the DNA-binding domain of Gal4 and recruited to the GAL7 gene via the Gal4-binding sequence, is sufficient for activating GAL7 in the absence of Kin28. We have further found that AR2 has an ability to recruit TATA box-binding protein-associated factors (TAFs) to the promoter. Consistently, transcription from promoters occupied naturally or artificially with TAFs is sustained in the absence of Kin28 function. CONCLUSIONS: These results show that CTM modulates activation function of AR2 in the Hsf1 molecule. We also suggest that recruitment of TAFs to a promoter is involved in the Kin28-independent transcription.


Assuntos
Proteínas de Ligação a DNA/química , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Ativação Transcricional , Proteínas de Transporte , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Metalotioneína/biossíntese , Metalotioneína/genética , Mutação , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...