Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; 18(49): e2204578, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287102

RESUMO

Herein, a simple way of tuning the optical and structural properties of porphyrin-based hydrogen-bonded organic frameworks (HOFs) is reported. By inserting transition metal ions into the porphyrin cores of GTUB-5 (p-H8 -TPPA (5,10,15,20-Tetrakis[p-phenylphosphonic acid] HOF), the authors show that it is possible to generate HOFs with different band gaps, photoluminescence (PL) life times, and textural properties. The band gaps of the resulting HOFs (viz., Cu-, Ni-, Pd-, and Zn-GTUB-5) are measured by diffuse reflectance and PL spectroscopy, as well as calculated via DFT, and the PL lifetimes are measured. Across the series, the band gaps vary over a narrow range from 1.37 to 1.62 eV, while the PL lifetimes vary over a wide range from 2.3 to 83 ns. These differences ultimately arise from metal-induced structural changes, viz., changes in the metal-to-nitrogen distances, number of hydrogen bonds, and pore volumes. DFT reveals that the band gaps of Cu-, Zn-, and Pd- GTUB-5 are governed by highest occupied/lowest unoccupied crystal orbitals (HOCO/LUCO) composed of π- orbitals on the porphyrin linkers, while that of Ni-GTUB-5 is governed by a HOCO and LUCO composed of Ni dorbitals. Overall, our findings show that metal-insertion can be used to optimize HOFs for optoelectronics and small-molecule capture applications.


Assuntos
Porfirinas , Ligação de Hidrogênio , Metais , Hidrogênio , Nitrogênio
2.
Adv Sci (Weinh) ; 9(24): e2200379, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35780500

RESUMO

A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

3.
J Phys Chem A ; 125(6): 1345-1354, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555196

RESUMO

Materials exhibiting thermally activated delayed fluorescence (TADF) have been extensively explored in the last decade. These emitters have great potential of being used in organic light-emitting diodes because they allow for high quantum efficiencies by utilizing triplet states via reverse intersystem crossing. In small molecules, this is done by spatially separating the highest occupied molecular orbital from the lowest unoccupied molecular orbital, forming an intramolecular charge-transfer (iCT) state and leading to a small energy difference between lowest excited singlet and triplet states (ΔEST). However, in polymer emitters, this is harder to achieve, and typical strategies usually include adding known TADF units as sidechains onto a polymer backbone. In a previous work, we proposed an alternative way to achieve a TADF polymer by repeating a non-TADF unit, polymerizing it via electron-donating carbazole moieties. The extended conjugation on the backbone reduced the ΔEST and allowed for an efficient TADF polymer. In this work, we present a more in-depth study of the shift from a non-TADF monomer to TADF oligomers. The monomer shows non-TADF emission, and we find the delayed emission to be of triplet-triplet annihilation origin. An iCT state is formed already in the dimer, leading to a much more efficient TADF emission. This is confirmed by an almost two-fold increase of photoluminescence quantum yield, a decrease in the delayed luminescence lifetime, and the respective spectral lineshapes of the molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...