Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38591614

RESUMO

Metal binder jetting shows great potential for medical technology. This potential can be exploited by integrating binder jetting into existing process routes known from metal injection molding. The biggest challenge here is the flowability and packing behavior of the powders used, due to their low size distributions. This paper investigates different powder-drying strategies to improve flowability using a statistical experimental design. Because of its relevance for medical applications, spherical Ti-6Al-4V powder with a size distribution under 25 µm is dried under various parameters using vacuum and gas purging. The investigated parameters, time and temperature, are selected in a central-composite-circumscribed test plan with eleven tests and three center points. The target parameters-water content, flowability and impurity levels (oxygen, nitrogen)-of the powder are analyzed. For validation, practical test trials are carried out on an industrial binder jetting system with unconditioned powder and conditioning with optimized parameters, comparing the manufactured parts and the powder bed. An optimized drying cycle with a duration of 6 h at 200 °C was determined for the investigated powder. Significant improvements in the dimensional accuracy (from ±1.5 to 0.3%) of the components and the visual impression of the powder bed are demonstrated.

2.
Materials (Basel) ; 15(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009497

RESUMO

Piston-based material extrusion enables cost savings for metal injection molding users when it is utilized as a complementary shaping process for green parts in small batch sizes. This, however, requires the use of series feedstock and the production of sufficiently dense green parts in order to ensure metal injection molding-like material properties. In this paper, a methodological approach is presented to identify material-specific process parameters for an industrially used Ti-6Al-4V metal injection molding feedstock based on the extrusion force. It was found that for an optimum extrusion temperature of 95 °C and printing speed of 8 mm/s an extrusion force of 1300 N ensures high-density green parts without under-extrusion. The resulting sintered part properties exhibit values comparable to metal injection molding in terms of part density (max. 99.1%) and tensile properties (max. yield strength: 933 MPa, max. ultimate tensile strength: 1000 MPa, max. elongation at break: 18.5%) depending on the selected build orientation. Thus, a complementary use could be demonstrated in principle for the Ti-6Al-4V feedstock.

3.
J Mater Sci Mater Med ; 24(5): 1285-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23386209

RESUMO

It is well established that surface topography greatly affect cell-surface interactions. In a recent study we showed that microstructured stainless steel surfaces characterized by the presence of defined hexagonally arranged hemisphere-like structures significantly affected cell architecture (shape and focal adhesion size) of primary human bone mesenchymal stromal cells. This study aimed at further investigating the influence these microstructures (microcline protruding hemispheres) on critical aspects of cell behaviour namely; proliferation, migration and osteogenic differentiation. As with previously reported data, we used primary human bone mesenchymal stromal cells to investigate such effects at an early stage in vitro. Cells of different patients were utilised for cell migration studies. Our data showed that an increase in cell proliferation was exhibited as a function of surface topography (hemispheres). Cell migration velocity also varied as a function of surface topography on patient specific basis and seems to relate to the differentiated state of the seeded cell population (as demonstrated by bALP positivity). Osteogenic differentiation, however, did not exhibit significant variations (both up and down-regulation) as a function of both surface topography and time in culture.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Aço Inoxidável/química , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Tamanho da Partícula , Propriedades de Superfície/efeitos dos fármacos
4.
Eur Cell Mater ; 23: 333-47, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22562233

RESUMO

Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.


Assuntos
Citoesqueleto/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Aço Inoxidável/farmacologia , Células Estromais/efeitos dos fármacos , Células 3T3 , Idoso , Idoso de 80 Anos ou mais , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/ultraestrutura , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Adesões Focais/metabolismo , Humanos , Masculino , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Aço Inoxidável/química , Células Estromais/metabolismo , Células Estromais/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...