Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9777-9789, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571203

RESUMO

3D printed microoptics have become important tools for miniature endoscopy, novel CMOS-based on-chip sensors, OCT-fibers, among others. Until now, only image quality and spot diagrams were available for optical characterization. Here, we introduce Ronchi interferometry as ultracompact and quick quantitative analysis method for measuring the wavefront aberrations after propagating coherent light through the 3D printed miniature optics. We compare surface shapes by 3D confocal microscopy with optical characterizations by Ronchi interferograms. Phase retrieval gives us the transversal wave front aberration map, which indicates that the aberrations of our microlenses that have been printed with a Nanoscribe GT or Quantum X printer exhibit RMS wavefront aberrations as small as λ/20, Strehl ratios larger than 0.91, and near-diffraction limited modulation transfer functions. Our method will be crucial for future developments of 3D printed microoptics, as the method is ultracompact, ultra-stable, and very fast regarding measurement and evaluation. It could fit directly into a 3D printer and allows for in-situ measurements right after printing as well as fast iterations for improving the shape of the optical surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...