Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 141: 105787, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36989873

RESUMO

While cementless implants are now widely used clinically, implant debonding still occur and is difficult to anticipate. Assessing the biomechanical strength of the bone-implant interface can help improving the understanding of osseointegration phenomena and thus preventing surgical failures. A dedicated and standardized implant model was considered. The samples were tested using a mode III cleavage device to assess the mechanical strength of the bone-implant interface by combining experimental and numerical approaches. Four rough (Sa = 24.5 µm) osseointegrated coin-shaped implants were left in sheep cortical bone during 15 weeks of healing time. Each sample was experimentally rotated at 0.03°/sec until complete rupture of the interface. The maximum values of the torque were comprised between 0.48 and 0.72 N m, while a significant increase of the normal force from 7-12 N to 31-43 N was observed during the bone-implant interface debonding, suggesting the generation of bone debris at the bone-implant interface. The experimental results were compared to an isogeometric finite element model describing the adhesion and debonding phenomena through a modified Coulomb's law, based on a varying friction coefficient to represent the transition from an unbroken to a broken bone-implant interface. A good agreement was found between numerical and experimental torques, with numerical friction coefficients decreasing from 8.93 to 1.23 during the bone-implant interface rupture, which constitutes a validation of this model to simulate the debonding of an osseointegrated bone-implant interface subjected to torsion.


Assuntos
Prótese Ancorada no Osso , Implantes Dentários , Animais , Ovinos , Osseointegração , Fenômenos Mecânicos , Interface Osso-Implante , Próteses e Implantes , Análise de Elementos Finitos , Fenômenos Biomecânicos
2.
Biomech Model Mechanobiol ; 22(1): 133-158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36284076

RESUMO

Cementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone-implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to describe a new 3D finite element frictional contact formulation for the debonding of partially osseointegrated implants. The contact model is based on a modified Coulomb friction law by Immel et al. (2020), that takes into account the tangential debonding of the bone-implant interface. This model is extended in the direction normal to the bone-implant interface by considering a cohesive zone model, to account for adhesion phenomena in the normal direction and for adhesive friction of partially bonded interfaces. The model is applied to simulate the debonding of an acetabular cup implant. The influence of partial osseointegration and adhesive effects on the long-term stability of the implant is assessed. The influence of different patient- and implant-specific parameters such as the friction coefficient [Formula: see text], the trabecular Young's modulus [Formula: see text], and the interference fit [Formula: see text] is also analyzed, in order to determine the optimal stability for different configurations. Furthermore, this work provides guidelines for future experimental and computational studies that are necessary for further parameter calibration.


Assuntos
Prótese Ancorada no Osso , Humanos , Fricção , Osseointegração , Interface Osso-Implante , Próteses e Implantes , Análise de Elementos Finitos
3.
Comput Biol Med ; 135: 104607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242871

RESUMO

Primary stability of cementless implants is crucial for the surgical success and long-term stability. However, primary stability is difficult to quantify in vivo and the biomechanical phenomena occurring during the press-fit insertion of an acetabular cup (AC) implant are still poorly understood. The aim of this study is to investigate the influence of the cortical and trabecular bone Young's moduli Ec and Et, the interference fit IF and the sliding friction coefficient of the bone-implant interface µ on the primary stability of an AC implant. For each parameter combination, the insertion of the AC implant into the hip cavity and consequent pull-out are simulated with a 3D finite element model of a human hemi-pelvis. The primary stability is assessed by determining the polar gap and the maximum pull-out force. The polar gap increases along with all considered parameters. The pull-out force shows a continuous increase with Ec and Et and a non-linear variation as a function of µ and IF is obtained. For µ > 0.6 and IF > 1.4 mm the primary stability decreases, and a combination of smaller µ and IF lead to a better fixation. Based on the patient's bone stiffness, optimal combinations of µ and IF can be identified. The results are in good qualitative agreement with previous studies and provide a better understanding of the determinants of the AC implant primary stability. They suggest a guideline for the optimal choice of implant surface roughness and IF based on the patient's bone quality.


Assuntos
Prótese de Quadril , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Análise de Elementos Finitos , Fricção , Humanos , Fenômenos Mecânicos
4.
Biomech Model Mechanobiol ; 19(3): 1091-1108, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31916014

RESUMO

Cementless implants are widely used in orthopedic and dental surgery. However, debonding-related failure still occurs at the bone-implant interface. It remains difficult to predict such implant failure since the underlying osseointegration phenomena are still poorly understood. Especially in terms of friction and adhesion at the macroscale, there is a lack of data and reliable models. The aim of this work was to present a new friction formulation that can model the tangential contact behavior between osseointegrated implants and bone tissue, with focus on debonding. The classical Coulomb's law is combined with a state variable friction law to model a displacement-dependent friction coefficient. A smooth state function, based on the sliding distance, is used to model implant debonding. The formulation is implemented in a 3D nonlinear finite element framework, and it is calibrated with experimental data and compared to an analytical model for mode III cleavage of a coin-shaped, titanium implant (Mathieu et al. in J Mech Behav Biomed Mater 8(1):194-203, 2012). Overall, the results show a close agreement with the experimental data, especially the peak and the softening part of the torque curve with a relative error of less than 2.25%. In addition, better estimates of the bone's shear modulus and the adhesion energy are obtained. The proposed model is particularly suitable to account for partial osseointegration.


Assuntos
Osso e Ossos/fisiologia , Interface Osso-Implante , Osseointegração , Próteses e Implantes , Estresse Mecânico , Algoritmos , Prótese Ancorada no Osso , Calibragem , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Fricção , Humanos , Modelos Biológicos , Modelos Teóricos , Propriedades de Superfície , Torque
5.
Proc Inst Mech Eng H ; 233(12): 1237-1249, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31564216

RESUMO

Biomechanical phenomena occurring at the bone-implant interface during the press-fit insertion of acetabular cup implants are still poorly understood. This article presents a nonlinear geometrical two-dimensional axisymmetric finite element model aiming at describing the biomechanical behavior of the acetabular cup implant as a function of the bone Young's modulus Eb, the diametric interference fit (IF), and the friction coefficient µ. The numerical model was compared with experimental results obtained from an in vitro test, which allows to determine a reference configuration with the parameter set: µ* = 0.3, Eb*=0.2GPa, and IF* = 1 mm for which the maximal contact pressure tN = 10.7 MPa was found to be localized at the peri-equatorial rim of the acetabular cavity. Parametric studies were carried out, showing that an optimal value of the pull-out force can be defined as a function of µ, Eb, and IF. For the reference configuration, the optimal pull-out force is obtained for µ = 0.6 (respectively, Eb = 0.35 GPa and IF = 1.4 mm). For relatively low value of µ (µ < 0.2), the optimal value of IF linearly increases as a function of µ independently of Eb, while for µ > 0.2, the optimal value of IF has a nonlinear dependence on µ and decreases as a function of Eb. The results can be used to help surgeons determine the optimal value of IF in a patient specific manner.


Assuntos
Acetábulo , Prótese de Quadril , Fenômenos Mecânicos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Fricção , Dinâmica não Linear , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...