Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1372662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660387

RESUMO

The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.

2.
Seizure ; 69: 99-104, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004928

RESUMO

PURPOSE: Next-generation sequencing (NGS) has made genetic testing of patients with epileptic encephalopathies easier - novel variants are discovered and new phenotypes described. Variants in the same gene - even the same variant - can cause different types of epilepsy and neurodevelopmental disorders. Our aim was to identify the genetic causes of epileptic encephalopathies in paediatric patients with complex phenotypes. METHODS: NGS was carried out for three patients with epileptic encephalopathies. Detailed clinical features, brain magnetic resonance imaging and electroencephalography were analysed. We searched the Human Gene Mutation Database for the published GABRG2 variants with clinical description of patients and composed a summary of the variants and their phenotypic features. RESULTS: We identified two novel de novo GABRG2 variants, p.P282T and p.S306F, with new phenotypes including neuroradiological evidence of neurodegeneration and epilepsy of infancy with migrating focal seizures (EIMFS). One patient carried previously reported p.P83S variant with autism spectrum disorder (ASD) phenotype that has not yet been described related to GABRG2 disorders and a more severe epilepsy phenotype than reported earlier. In all, the literature search yielded twenty-two articles describing 27 different variants that were divided into two categories: those with self-limiting epilepsies and febrile seizures and those with more severe drug-resistant epileptic encephalopathies. CONCLUSION: This study further expands the genotypic and phenotypic spectrum of epilepsies associated with GABRG2 variants. More knowledge is still needed about the influence of the environment, genetic background and other epilepsy susceptibility genes on the phenotype of the specific GABRG2 variants.


Assuntos
Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação/genética , Receptores de GABA-A/genética , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Epilepsia/diagnóstico , Feminino , Genótipo , Humanos , Lactente , Masculino , Fenótipo , Convulsões Febris/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-30238156

RESUMO

Absence of screening pigment in insect compound eyes has been linked to visual dysfunction. We investigated how its loss in a white-eyed mutant (W-E) alters the photoreceptor electrophysiological properties, opsin gene expression, and the behavior of the cockroach, Periplaneta americana. Whole-cell patch-clamp recordings of green-sensitive photoreceptors in W-E cockroaches gave reduced membrane capacitance, absolute sensitivity to light, and light-induced currents. Decreased low-pass filtering increased voltage-bump amplitudes in W-E photoreceptors. Intracellular recordings showed that angular sensitivity of W-E photoreceptors had two distinct components: a large narrow component with the same acceptance angle as wild type, plus a relatively small wide component. Information processing was evaluated using Gaussian white-noise modulated light stimulation. In bright light, W-E photoreceptors demonstrated higher signal gain and signal power than wild-type photoreceptors. Expression levels of the primary UV- and green-sensitive opsins were lower and the secondary green-sensitive opsin significantly higher in W-E than in wild-type retinae. In behavioral experiments, W-E cockroaches were significantly less active in dim green light, consistent with the relatively low light sensitivity of their photoreceptors. Overall, these differences can be related to the loss of screening pigment function and to a compensatory decrease in the rhabdomere size in W-E retinae.


Assuntos
Olho Composto de Artrópodes/fisiologia , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Comportamento Animal/fisiologia , Capacitância Elétrica , Expressão Gênica , Proteínas de Insetos/metabolismo , Espaço Intracelular/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Atividade Motora , Opsinas/metabolismo , Técnicas de Patch-Clamp , Estimulação Luminosa , Pigmentação , Potássio/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
4.
J Exp Biol ; 221(Pt 21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224371

RESUMO

The compound eye of Periplaneta americana contains two spectral classes of photoreceptors: narrow-band UV-sensitive and broad-band green-sensitive. In intracellular recordings, stimulation of green-sensitive photoreceptors with flashes of relatively bright UV/violet light produced anomalous delayed depolarization after the end of the normal light response, whereas stimulation of UV-sensitive photoreceptors with green light elicited biphasic responses characterized by initial transient hyperpolarization followed by prolonged delayed depolarization. To explore the basis for these findings, we used RNA interference to selectively suppress expression of the genes encoding green opsin (GO1), UV opsin (UVO) or both. The hyperpolarizing component in UV-sensitive photoreceptors was eliminated and the delayed depolarization was reduced after GO1 knockdown, suggesting that the hyperpolarization represents fast inhibitory interactions between green- and UV-sensitive photoreceptors. Green-sensitive photoreceptor responses of GO1 knockdowns to flashes of UV/violet were almost exclusively biphasic, whereas residual responses to green had normal kinetics. Knockdown of UVO reduced the responses of UV-sensitive photoreceptors but had minor effects on delayed depolarization in green-sensitive photoreceptors. Angular sensitivity analysis indicated that delayed depolarization of green-sensitive photoreceptors by violet light originates from excitation of (an)other photoreceptor(s) in the same ommatidium. The angle at which the maximal delayed depolarization was observed in green-sensitive photoreceptors stimulated with violet light did not match the angle of the maximal transient depolarization. In contrast, no significant mismatch was observed for delayed depolarization elicited by green light. These results suggest that the cellular sources of the normal transient and additional delayed depolarization by violet light are separate and distinct.


Assuntos
Luz , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Genes de Insetos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Opsinas/genética , Opsinas/metabolismo , Estimulação Luminosa , Interferência de RNA
5.
J Gen Physiol ; 150(10): 1386-1396, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30115661

RESUMO

Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.


Assuntos
Adaptação Fisiológica , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Expressão Gênica , Masculino , Potássio/metabolismo
6.
J Gen Physiol ; 149(4): 455-464, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28283577

RESUMO

Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.


Assuntos
Proteínas de Insetos/metabolismo , Transdução de Sinal Luminoso , Células Fotorreceptoras de Invertebrados/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação , Animais , Proteínas de Insetos/genética , Periplaneta/metabolismo , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 372(1717)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193821

RESUMO

Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.


Assuntos
Escuridão , Insetos/fisiologia , Células Fotorreceptoras de Invertebrados , Visão Ocular , Adaptação Fisiológica , Animais
8.
J Comp Neurol ; 525(8): 1879-1908, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28074466

RESUMO

To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.


Assuntos
Encéfalo/anatomia & histologia , Besouros/anatomia & histologia , Neurópilo/citologia , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Besouros/fisiologia , Sinais (Psicologia) , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imuno-Histoquímica , Neurópilo/fisiologia , Orientação/fisiologia
9.
J Physiol ; 595(16): 5465-5479, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087896

RESUMO

KEY POINTS: The principles underlying the evolutionary selection of ion channels for expression in sensory neurons are unclear. Photoreceptor depolarization in the diurnal Drosophila melanogaster is predominantly provided by light-activated transient receptor potential (TRP) channels, whereas repolarization is mediated by sustained voltage-gated K+ channels of the Shab family. In the present study, we show that phototransduction in the nocturnal cockroach Periplaneta americana is predominantly mediated by TRP-like channels, whereas membrane repolarization is based on EAG channels. Although bright light stimulates Shab channels in Drosophila, further restricting depolarization and improving membrane bandwidth, it strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium and is abolished by chelating intracellular calcium or suppressing eag gene expression. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth. This makes EAG unsuitable for light response conditioning during the day and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects. ABSTRACT: The principles underlying evolutionary selection of ion channels for expression in sensory neurons are unclear. Among species possessing microvillar photoreceptors, the major ionic conductances have only been identified in Drosophila melanogaster. In Drosophila, depolarization is provided by light-activated transient receptor potential (TRP) channels with a minor contribution from TRP-like (TRPL) channels, whereas repolarization is mediated by sustained voltage-gated K+ (Kv) channels of the Shab family. Bright light stimulates Shab channels, further restricting depolarization and improving membrane bandwidth. In the present study, data obtained using a combination of electrophysiological, pharmacological and molecular knockdown techniques strongly suggest that in photoreceptors of the nocturnal cockroach Periplaneta americana the major excitatory channel is TRPL, whereas the predominant delayed rectifier is EAG, a ubiquitous but enigmatic Kv channel. By contrast to the diurnal Drosophila, bright light strongly suppresses EAG conductance in Periplaneta. This light-dependent inhibition (LDI) is caused by calcium entering the cytosol and is amplified following inhibition of calcium extrusion, and it can also be abolished by chelating intracellular calcium or suppressing eag gene expression by RNA interference. LDI increases membrane resistance, augments gain and reduces the signalling bandwidth, impairing information transfer. LDI is also observed in the nocturnal cricket Gryllus integer, whereas, in the diurnal water strider Gerris lacustris, the delayed rectifier is up-regulated by light. Although LDI is not expected to reduce delayed rectifier current in the normal illumination environment of nocturnal cockroaches and crickets, it makes EAG unsuitable for light response conditioning during the day, and might have resulted in the evolutionary replacement of EAG by other delayed rectifiers in diurnal insects.


Assuntos
Canais de Potássio Éter-A-Go-Go/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Ritmo Circadiano , Canais de Potássio Éter-A-Go-Go/genética , Gryllidae/fisiologia , Heterópteros/fisiologia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Luz , Masculino , Microvilosidades , Periplaneta/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Interferência de RNA , RNA Mensageiro/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
10.
Front Physiol ; 7: 477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826250

RESUMO

We describe a new nonlinear dynamic model of insect phototransduction using a NLN (nonlinear, linear, nonlinear) block structure. The first nonlinear stage provides a single exponential decline in gain and mean following the start of light stimulation. The linear stage uses a two-parameter log-normal convolution model previously applied alone to insect photoreceptors. The final stage is a static quadratic function. The model fitted current and voltage responses of isolated single photoreceptors from three different insect species with reasonable fidelity when they were stimulated by naturalistic time series having wide bandwidth and contrast, over a light intensity range of >1:104. Mean squared error values for receptor current and receptor potential varied over ~2-60%, with many values below 10%. Linear log-normal filter parameters did not vary strongly with species or light intensity. Initial gain reduction was only large for the highest light levels, while the time constant of gain and mean reduction decreased with light intensity. The final nonlinearity changed from positively to negatively quadratic with increasing light intensity, indicating a change from threshold, or expansion to saturating compression with greater signal strength. Photoreceptor information transmission was estimated by linear information capacity and signal entropy measurements of both experimental data and predicted outputs of the model for identical stimuli at each light level. Comparison of actual and predicted data indicated significant added noise during phototransduction, with information being progressively lost by nonlinear behavior with increasing light intensity.

11.
J Neurophysiol ; 115(4): 2147-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26864762

RESUMO

Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance.


Assuntos
Ritmo Circadiano , Proteínas de Insetos/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação , Animais , Ecossistema , Proteínas de Insetos/genética , Insetos , Fotoperíodo , Células Fotorreceptoras de Invertebrados/metabolismo , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Especificidade da Espécie
12.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274359

RESUMO

The common backswimmer, Notonecta glauca, uses vision by day and night for functions such as underwater prey animal capture and flight in search of new habitats. Although previous studies have identified some of the physiological mechanisms facilitating such flexibility in the animal's vision, neither the biophysics of Notonecta photoreceptors nor possible cellular adaptations are known. Here, we studied Notonecta photoreceptors using patch-clamp and intracellular recording methods. Photoreceptor size (approximated by capacitance) was positively correlated with absolute sensitivity and acceptance angles. Information rate measurements indicated that large and more sensitive photoreceptors performed better than small ones. Our results suggest that backswimmers are adapted for vision in both dim and well-illuminated environments by having open-rhabdom eyes with large intrinsic variation in absolute sensitivity among photoreceptors, exceeding those found in purely diurnal or nocturnal species. Both electrophysiology and microscopic analysis of retinal structure suggest two retinal subsystems: the largest peripheral photoreceptors provide vision in dim light and the smaller peripheral and central photoreceptors function primarily in sunlight, with light-dependent pigment screening further contributing to adaptation in this system by dynamically recruiting photoreceptors with varying sensitivity into the operational pool.


Assuntos
Heterópteros/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular , Adaptação Fisiológica , Animais , Luz
13.
Front Physiol ; 5: 153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795648

RESUMO

In a microvillar photoreceptor, absorption of an incident photon initiates a phototransduction reaction that generates a depolarizing light-induced current (LIC) in the microvillus. Although in-depth knowledge about these processes in photoreceptors of the fruitfly Drosophila is available, not much is known about their nature in other insect species. Here, we present description of some basic properties of both elementary and macroscopic LICs and their Ca(2+)-dependence in the photoreceptors of a dark-active species, the cockroach Periplaneta americana. Cockroach photoreceptors respond to single photon absorptions by generating quantum bumps with about 5-fold larger amplitudes than in Drosophila. At the macroscopic current level, cockroach photoreceptors responded to light with variable sensitivity and current waveform. This variability could be partially attributed to differences in whole-cell capacitance. Transient LICs, both elementary and macroscopic, showed only moderate dependence on extracellular Ca(2+). However, with long light pulses, response inactivation was largely abolished and the overall size of LICs increased when extracellular Ca(2+) was omitted. Finally, by determining relative ionic permeabilities from reversals of LICs, we demonstrate that when compared to Drosophila, cockroach light-gated channels are only moderately Ca(2+)-selective.

14.
Biol Cybern ; 108(3): 305-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692025

RESUMO

Shannon's seminal approach to estimating information capacity is widely used to quantify information processing by biological systems. However, the Shannon information theory, which is based on power spectrum estimation, necessarily contains two sources of error: time delay bias error and random error. These errors are particularly important for systems with relatively large time delay values and for responses of limited duration, as is often the case in experimental work. The window function type and size chosen, as well as the values of inherent delays cause changes in both the delay bias and random errors, with possibly strong effect on the estimates of system properties. Here, we investigated the properties of these errors using white-noise simulations and analysis of experimental photoreceptor responses to naturalistic and white-noise light contrasts. Photoreceptors were used from several insect species, each characterized by different visual performance, behavior, and ecology. We show that the effect of random error on the spectral estimates of photoreceptor performance (gain, coherence, signal-to-noise ratio, Shannon information rate) is opposite to that of the time delay bias error: the former overestimates information rate, while the latter underestimates it. We propose a new algorithm for reducing the impact of time delay bias error and random error, based on discovering, and then using that size of window, at which the absolute values of these errors are equal and opposite, thus cancelling each other, allowing minimally biased measurement of neural coding.


Assuntos
Viés , Teoria da Informação , Biologia de Sistemas , Simulação por Computador , Análise Espectral/métodos , Biologia de Sistemas/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-24398538

RESUMO

The compound eye of the cricket Gryllus bimaculatus contains a specialized dorsal rim area (DRA) populated by distinct blue-sensitive photoreceptors responsible for perception of polarized light. The rest of the eye is dominated by green-sensitive photoreceptors. Using patch clamp we studied dissociated ommatidia of nocturnal adults and diurnal eight-instar nymphs with the goals (1) of characterizing the biophysical properties of cricket photoreceptors in general and (2) describing the functionally dissimilar blue- and green-sensitive photoreceptors in terms of voltage-gated channel composition and signal coding. Despite different lifestyles, adult and nymph photoreceptors were indistinguishable. No significant circadian changes were observed in K⁺ currents. In contrast, prominent differences were seen between blue- and green-sensitive photoreceptors. The former were characterized by relatively low absolute sensitivity, high input resistance, slow quantum bumps with long latencies, small light-induced and K⁺ currents and low steady-state depolarization. Information rate, a measure of photoreceptor performance calculated from voltage responses to bandwidth-limited white noise-modulated light contrast, was 87 ± 8 bits s⁻¹ in green-sensitive photoreceptors vs. 59 ± 14 bits s⁻¹ in blue-sensitive photoreceptors, implying a limited role of DRA in the perception of visual contrasts. In addition, evidence of electrical coupling between photoreceptors is presented.


Assuntos
Percepção de Cores/fisiologia , Cor , Gryllidae/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Biofísica , Estimulação Elétrica , Gryllidae/fisiologia , Luz , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Potássio/metabolismo , Tempo de Reação , Análise Espectral
16.
J Neurosci ; 32(47): 16821-31, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23175835

RESUMO

Optimization of sensory processing during development can be studied by using photoreceptors of hemimetabolous insects (with incomplete metamorphosis) as a research model. We have addressed this topic in the stick insect Carausius morosus, where retinal growth after hatching is accompanied by a diurnal-to-nocturnal shift in behavior, by recording from photoreceptors of first instar nymphs and adult animals using the patch-clamp method. In the nymphs, ommatidia were smaller and photoreceptors were on average 15-fold less sensitive to light than in adults. The magnitude of A-type K(+) current did not increase but the delayed rectifier doubled in adults compared with nymphs, the K(+) current densities being greater in the nymphs. By contrast, the density of light-induced current did not increase, although its magnitude increased 8.6-fold, probably due to the growth of microvilli. Nymph photoreceptors performed poorly, demonstrating a peak information rate (IR) of 2.9 ± 0.7 bits/s versus 34.1 ± 5.0 bits/s in adults in response to white-noise stimulation. Strong correlations were found between photoreceptor capacitance (a proxy for cell size) and IR, and between light sensitivity and IR, with larger and more sensitive photoreceptors performing better. In adults, IR peaked at light intensities matching irradiation from the evening sky. Our results indicate that biophysical properties of photoreceptors at each age stage and visual behavior are interdependent and that developmental improvement in photoreceptor performance may facilitate the switch from the diurnal to the safer nocturnal lifestyle. This also has implications for how photoreceptors achieve optimal performance.


Assuntos
Ritmo Circadiano/fisiologia , Embrião não Mamífero/fisiologia , Insetos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Estimulação Acústica , Animais , Interpretação Estatística de Dados , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Metabolismo Energético/fisiologia , Feminino , Canais Iônicos/fisiologia , Larva , Luz , Ruído , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Visão Ocular/fisiologia
17.
BMC Neurosci ; 13: 93, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22867024

RESUMO

BACKGROUND: The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana), a nocturnal insect with a visual system adapted for dim light. RESULTS: Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR) and a fast transient inactivating type (KA). Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR) current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role. CONCLUSIONS: The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.


Assuntos
Fenômenos Biofísicos/fisiologia , Potenciais da Membrana/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potássio/fisiologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Baratas , Simulação por Computador , Estimulação Elétrica , Técnicas In Vitro , Luz , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Técnicas de Patch-Clamp , Estimulação Luminosa , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Tetraetilamônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...