Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy ; 79(2): 432-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804001

RESUMO

BACKGROUND: Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS: C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS: Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION: Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Camundongos , Animais , Camundongos Endogâmicos C57BL , Poeira , Citocinas/metabolismo , Material Particulado/efeitos adversos
2.
Front Allergy ; 4: 1219268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528863

RESUMO

Background: Early dietary introduction of peanut has shown efficacy in clinical trials and driven pediatric recommendations for early introduction of peanut to children with heightened allergy risk worldwide. Unfortunately, tolerance is not induced in every case, and a subset of patients are allergic prior to introduction. Here we assess peanut allergic sensitization and oral tolerance in genetically diverse mouse strains. Objective: We aimed to determine whether environmental adjuvant-driven airway sensitization and oral tolerance to peanut could be induced in various genetically diverse mouse strains. Methods: C57BL/6J and 12 Collaborative Cross (CC) mouse strains were fed regular chow or ad libitum peanut butter to induce tolerance. Tolerance was tested by attempting to sensitize mice via intratracheal exposure to peanut and lipopolysaccharide (LPS), followed by intraperitoneal peanut challenge. Peanut-specific immunoglobulins and peanut-induced anaphylaxis were assessed. Results: Without oral peanut feeding, most CC strains (11/12) and C57BL/6J induced peanut-specific IgE and IgG1 following airway exposure to peanut and LPS. With oral peanut feeding none of the CC strains nor C57BL/6J mice became sensitized to peanut or experienced anaphylaxis following peanut challenge. Conclusion: Allergic sensitization and oral tolerance to peanut can be achieved across a range of genetically diverse mice. Notably, the same strains that became allergic via airway sensitization were tolerized by feeding high doses of peanut butter before sensitization, suggesting that the order and route of peanut exposure are critical for determining the allergic fate.

3.
Clin Exp Allergy ; 53(9): 930-940, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437951

RESUMO

BACKGROUND: Indoor dust (ID) is a source of peanut proteins and immunostimulatory adjuvants (e.g. LPS) that can promote airway sensitization to peanut. We aimed to determine whether a single airway exposure to peanut plus adjuvant is sufficient to prevent oral tolerance. METHODS: To determine the effect of a single priming event, C57BL/6J mice were exposed once to peanut plus adjuvant through the airway, followed by either airway or low-dose oral exposure to peanut, and assessed for peanut allergy. Oral tolerance was investigated by feeding high-dose peanut followed by airway sensitization. To determine whether a single priming could prevent oral tolerance, the high-dose peanut regimen was applied after a single airway exposure to peanut plus adjuvant. Peanut-specific IgE and IgG1 were quantified, and mice were challenged to peanut to assess allergy. Peanut-specific CD4+ memory T cells (CD4+ TCRß+ CD44hi CD154+ ) were quantified in mediastinal lymph nodes following airway priming. RESULTS: Mice co-exposed to peanut with LPS or ID through the airway were primed to develop peanut allergy after subsequent low-dose oral or airway exposures to peanut. Oral tolerance was induced in mice fed high-dose peanut prior to airway sensitization. In contrast, mice fed high-dose peanut following a single airway exposure to peanut plus adjuvant led to allergy. Peanut-specific CD4+ memory T cells were detected as early as 7 days after the single airway priming with peanut plus adjuvant, however, delaying peanut feeding even 1 day following priming led to allergy, whereas peanut feeding the same day as priming led to tolerance. CONCLUSIONS: A single airway exposure to peanut plus adjuvant is sufficient to prime the immune system to develop allergy following subsequent high-dose oral exposure. These results highlight the importance of introducing peanut as early as possible to prevent sensitization through a non-oral priming event.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Poeira , Tolerância Imunológica , Alérgenos
4.
Respir Res ; 24(1): 153, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296458

RESUMO

Among asthmatics, there is significant heterogeneity in the clinical presentation and underlying pathophysiological mechanisms, leading to the recognition of multiple disease endotypes (e.g., T2-high vs. T2-low). This heterogeneity extends to severe asthmatics, who may struggle to control symptoms even with high-dose corticosteroid treatment and other therapies. However, there are limited mouse models available to model the spectrum of severe asthma endotypes. We sought to identify a new mouse model of severe asthma by first examining responses to chronic allergen exposure among strains from the Collaborative Cross (CC) mouse genetics reference population, which contains greater genetic diversity than other inbred strain panels previously used for models of asthma. Mice from five CC strains and the often-used classical inbred strain BALB/cJ were chronically exposed to house dust mite (HDM) allergen for five weeks followed by measurements of airway inflammation. CC strain CC011/UncJ (CC011) exhibited extreme responses to HDM including high levels of airway eosinophilia, elevated lung resistance, and extensive airway wall remodeling, and even fatalities among ~ 50% of mice prior to study completion. Compared to BALB/cJ mice, CC011 mice had stronger Th2-mediated airway responses demonstrated by significantly elevated total and HDM-specific IgE and increased Th2 cytokines during tests of antigen recall, but not enhanced ILC2 activation. Airway eosinophilia in CC011 mice was completely dependent upon CD4+ T-cells. Notably, we also found that airway eosinophilia in CC011 mice was resistant to dexamethasone steroid treatment. Thus, the CC011 strain provides a new mouse model of T2-high, severe asthma driven by natural genetic variation likely acting through CD4+ T-cells. Future studies aimed at determining the genetic basis of this phenotype will provide new insights into mechanisms underlying severe asthma.


Assuntos
Asma , Imunidade Inata , Camundongos , Animais , Citocinas , Linfócitos , Asma/tratamento farmacológico , Pulmão , Alérgenos , Pyroglyphidae , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Células Th2
5.
Immun Inflamm Dis ; 10(3): e575, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861108

RESUMO

BACKGROUND: Asthma is a heterogenous disease that can be classified into eosinophilic (type 2-high) and noneosinophilic (type 2-low) endotypes. The type 2-low endotype of asthma can be characterized by the presence of neutrophilic airway inflammation that is poorly responsive to corticosteroids. Dysregulated innate immune responses to microbial products including Toll-like receptor (TLR) ligands have been associated with the pathogenesis of neutrophilic asthma. The key molecules that regulate inflammatory responses in individuals with neutrophilic asthma remain unclear. We previously reported that the immunoregulatory receptor neuropilin-2 (NRP2) is expressed by murine and human alveolar macrophage (AM) and suppresses lipopolysaccharide (LPS)-induced neutrophilic airway inflammation. METHODS: Here, we investigated the immunoregulatory role of NRP2 in a mouse model of neutrophilic asthma. RESULTS: We found that TLR ligands, but not T helper 2 (Th2)-promoting adjuvants, induced NRP2 expression by AM. Using an LPS-mediated model of neutrophilic asthma, we demonstrate that NRP2 was increased in AM and other lung antigen-presenting cells following airway challenge with antigen. Conditional deletion of NRP2 in myeloid cells exacerbated airway inflammation in a neutrophilic asthma model. In contrast, myeloid-specific ablation of NRP2 did not affect airway inflammation in a Th2-mediated eosinophilic asthma model. Myeloid-specific ablation of NRP2 did not affect Th1/Th17 responses to inhaled antigens or expression of neutrophil chemokines but rather resulted in impaired efferocytosis by AM, which is necessary for effective resolution of airway inflammation. CONCLUSION: Our findings suggest that NRP2 is a negative regulator of airway inflammation associated with neutrophilic asthma.


Assuntos
Asma , Neuropilina-2 , Animais , Asma/imunologia , Inflamação , Camundongos , Neuropilina-2/genética , Neuropilina-2/metabolismo , Neutrófilos/imunologia , Células Th17/imunologia , Células Th2/imunologia
6.
Biochemistry ; 60(26): 2130-2151, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34167303

RESUMO

Two-component signaling is a primary method by which microorganisms interact with their environments. A kinase detects stimuli and modulates autophosphorylation activity. The signal propagates by phosphotransfer from the kinase to a response regulator, eliciting a response. Response regulators operate over a range of time scales, corresponding to their related biological processes. Response regulator active site chemistry is highly conserved, but certain variable residues can influence phosphorylation kinetics. An Ala-to-Pro substitution (K+4, residue 113) in the Escherichia coli response regulator CheY triggers a constitutively active phenotype; however, the A113P substitution is too far from the active site to directly affect phosphochemistry. To better understand the activating mechanism(s) of the substitution, we analyzed receiver domain sequences to characterize the evolutionary role of the K+4 position. Although most featured Pro, Leu, Ile, and Val residues, chemotaxis-related proteins exhibited atypical Ala, Gly, Asp, and Glu residues at K+4. Structural and in silico analyses revealed that CheY A113P adopted a partially active configuration. Biochemical data showed that A113P shifted CheY toward a more activated state, enhancing autophosphorylation. By characterizing CheY variants, we determined that this functionality was transmitted through a hydrophobic network bounded by the ß5α5 loop and the α1 helix of CheY. This region also interacts with the phosphodonor CheAP1, suggesting that binding generates an activating perturbation similar to the A113P substitution. Atypical residues like Ala at the K+4 position likely serve two purposes. First, restricting autophosphorylation may minimize background noise generated by intracellular phosphodonors such as acetyl phosphate. Second, optimizing interactions with upstream partners may help prime the receiver domain for phosphorylation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Regulação Alostérica/genética , Sequência de Aminoácidos , Domínio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas Quimiotáticas Aceptoras de Metil/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação/genética , Conformação Proteica , Domínios Proteicos/genética
7.
J Allergy Clin Immunol ; 148(3): 689-693, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111450

RESUMO

Food allergies have increased at an alarming rate over the past 2 decades, indicating that environmental factors are driving disease progression. It has been postulated that sensitization to foods, in particular, peanut, occurs through impaired skin. Peanut allergens have been quantified in household dust and may be the culprit source. Indeed, TH2 cell-skewing innate cytokines can be driven by application of food antigens on both intact and impaired skin of mice, resulting in antigen-specific IgE production and anaphylaxis following allergen exposure. However, allergy induction through the skin can be prevented by induction of oral tolerance before skin exposure. These observations led to the dual allergen exposure hypothesis, according to which oral exposure to food antigens leads to tolerance and antigen exposure on impaired skin leads to allergy. Here, we propose the airway as an alternative route of sensitization in the dual allergen exposure hypothesis that leads to food allergy. Specifically, we will provide evidence from mouse models and human cell-based studies that together implicate the airway as a plausible route of sensitization.


Assuntos
Hipersensibilidade a Amendoim/imunologia , Sistema Respiratório/imunologia , Pele/imunologia , Alérgenos/imunologia , Animais , Arachis/imunologia , Humanos , Tolerância Imunológica
9.
Front Immunol ; 11: 599637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542716

RESUMO

Food allergy is a potentially fatal disease affecting 8% of children and has become increasingly common in the past two decades. Despite the prevalence and severe nature of the disease, the mechanisms underlying sensitization remain to be further elucidated. The Collaborative Cross is a genetically diverse panel of inbred mice that were specifically developed to study the influence of genetics on complex diseases. Using this panel of mouse strains, we previously demonstrated CC027/GeniUnc mice, but not C3H/HeJ mice, develop peanut allergy after oral exposure to peanut in the absence of a Th2-skewing adjuvant. Here, we investigated factors associated with sensitization in CC027/GeniUnc mice following oral exposure to peanut, walnut, milk, or egg. CC027/GeniUnc mice mounted antigen-specific IgE responses to peanut, walnut and egg, but not milk, while C3H/HeJ mice were not sensitized to any antigen. Naïve CC027/GeniUnc mice had markedly lower total fecal IgA compared to C3H/HeJ, which was accompanied by stark differences in gut microbiome composition. Sensitized CC027/GeniUnc mice had significantly fewer CD3+ T cells but higher numbers of CXCR5+ B cells and T follicular helper cells in the mesenteric lymph nodes compared to C3H/HeJ mice, which is consistent with their relative immunoglobulin production. After oral challenge to the corresponding food, peanut- and walnut-sensitized CC027/GeniUnc mice experienced anaphylaxis, whereas mice exposed to milk and egg did not. Ara h 2 was detected in serum collected post-challenge from peanut-sensitized mice, indicating increased absorption of this allergen, while Bos d 5 and Gal d 2 were not detected in mice exposed to milk and egg, respectively. Machine learning on the change in gut microbiome composition as a result of food protein exposure identified a unique signature in CC027/GeniUnc mice that experienced anaphylaxis, including the depletion of Akkermansia. Overall, these results demonstrate several factors associated with enteral sensitization in CC027/GeniUnc mice, including diminished total fecal IgA, increased allergen absorption and altered gut microbiome composition. Furthermore, peanuts and tree nuts may have inherent properties distinct from milk and eggs that contribute to allergy.


Assuntos
Alérgenos/imunologia , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina A/imunologia , Absorção Intestinal/imunologia , Hipersensibilidade a Amendoim , Alérgenos/genética , Animais , Microbioma Gastrointestinal/genética , Predisposição Genética para Doença , Imunoglobulina A/genética , Absorção Intestinal/genética , Camundongos , Camundongos Transgênicos , Hipersensibilidade a Amendoim/genética , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/microbiologia
10.
J Biol Chem ; 294(44): 16010-16019, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501246

RESUMO

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90ß, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5'N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5' moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/farmacologia , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular , Adenosina-5'-(N-etilcarboxamida)/análogos & derivados , Regulação Alostérica , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/metabolismo , Ligação Proteica
11.
Clin Exp Allergy ; 49(11): 1500-1511, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444814

RESUMO

BACKGROUND: There is growing evidence that environmental peanut exposure through non-oral routes, including the skin and respiratory tract, can result in peanut sensitization. Environmental adjuvants in indoor dust can promote sensitization to inhaled antigens, but whether they contribute to peanut allergy development is unclear. OBJECTIVE: We investigated whether indoor dust promotes airway sensitization to peanut and peanut allergy development in mice. METHODS: Female and male C57BL/6J mice were exposed via the airways to peanut, indoor dust extract, or both for 2 weeks. Mice were then challenged with peanut and assessed for anaphylaxis. Peanut-specific immunoglobulins, peanut uptake by lung conventional dendritic cells (cDCs), lung innate cytokines, and T cell differentiation in lung-draining lymph nodes were quantified. Innate cytokine production by primary human bronchial epithelial cells exposed to indoor dust was also determined. RESULTS: Inhalational exposure to low levels of peanut in combination with indoor dust, but neither alone, resulted in production of peanut-specific IgE and development of anaphylaxis upon peanut challenge. Indoor dust triggered production of innate cytokines in murine lungs and in primary human bronchial epithelial cells. Additionally, inhaled indoor dust stimulated maturation and migration of peanut-laden lung type 1 cDCs to draining lymph nodes. Inhalational exposure to peanut and indoor dust induced peanut-specific T helper 2 cell differentiation and accumulation of T follicular helper cells in draining lymph nodes, which were associated with increased B cell numbers and peanut-specific immunoglobulin production. CONCLUSIONS & CLINICAL RELEVANCE: Indoor dust promotes airway sensitization to peanut and development of peanut allergy in mice. Our findings suggest that environmental adjuvants in indoor dust may be determinants of peanut allergy development in children.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Arachis/imunologia , Poeira , Pulmão , Hipersensibilidade a Amendoim , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Hipersensibilidade a Amendoim/etiologia , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
12.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L202-L211, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29671604

RESUMO

Neuropilins are multifunctional receptors that play important roles in immune regulation. Neuropilin-2 (NRP2) is expressed in the lungs, but whether it regulates airway immune responses is unknown. Here, we report that Nrp2 is weakly expressed by alveolar macrophages (AMs) in the steady state but is dramatically upregulated following in vivo lipopolysaccharide (LPS) inhalation. Ex vivo treatment of human AMs with LPS also increased NRP2 mRNA expression and cell-surface display of NRP2 protein. LPS-induced Nrp2 expression in AMs was dependent upon the myeloid differentiation primary response 88 signaling pathway and the transcription factor NF-κB. In addition to upregulating display of NRP2 on the cell membrane, inhaled LPS also triggered AMs to release soluble NRP2 into the airways. Finally, myeloid-specific ablation of NRP2 resulted in increased expression of the chemokine (C-C motif) ligand 2 ( Ccl2) in the lungs and prolonged leukocyte infiltration in the airways following LPS inhalation. These findings suggest that NRP2 expression by AMs regulates LPS-induced inflammatory cell recruitment to the airways and reveal a novel role for NRP2 during innate immune responses in the lungs.


Assuntos
Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Neuropilina-2/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Administração por Inalação , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Imunidade Inata/genética , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Neuropilina-2/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
13.
Biochemistry ; 55(39): 5595-5609, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27589219

RESUMO

Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein background tested, likely by modulating access of the attacking water molecule to the active site. Similarly, rate constants for CheY autophosphorylation with three different small molecule phosphodonors were consistent with the steric constraints on access to the phosphorylation site arising from combination of specific phosphodonors with particular amino acids at T+1. Because other variable active site residues also influence response regulator phosphorylation biochemistry, we began to explore how context (here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between sensor kinases and response regulators but was not a primary determinant of their interaction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Aminoácidos/química , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Fosforilação , Conformação Proteica
14.
J Bacteriol ; 198(18): 2483-93, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27381915

RESUMO

UNLABELLED: Plants and microorganisms use two-component signal transduction systems (TCSs) to mediate responses to environmental stimuli. TCSs mediate responses through phosphotransfer from a conserved histidine on a sensor kinase to a conserved aspartate on the receiver domain of a response regulator. Typically, signal termination occurs through dephosphorylation of the receiver domain, which can catalyze its own dephosphorylation. Despite strong structural conservation between receiver domains, reported autodephosphorylation rate constants (kdephos) span a millionfold range. Variable receiver domain active-site residues D + 2 and T + 2 (two amino acids C terminal to conserved phosphorylation site and Thr/Ser, respectively) influence kdephos values, but the extent and mechanism of influence are unclear. We used sequence analysis of a large database of naturally occurring receiver domains to design mutant receiver domains for experimental analysis of autodephosphorylation kinetics. When combined with previous analyses, kdephos values were obtained for CheY variants that contained D + 2/T + 2 pairs found in 54% of receiver domain sequences. Tested pairs of amino acids at D + 2/T + 2 generally had similar effects on kdephos in CheY, PhoBN, or Spo0F. Acid or amide residues at D + 2/T + 2 enhanced kdephos CheY variants altered at D + 2/T + 2 exhibited rate constants for autophosphorylation with phosphoramidates and autodephosphorylation that were inversely correlated, suggesting that D + 2/T + 2 residues interact with aspects of the ground or transition states that differ between the two reactions. kdephos of CheY variants altered at D + 2/T + 2 correlated significantly with kdephos of wild-type receiver domains containing the same D + 2/T + 2 pair. Additionally, particular D + 2/T + 2 pairs were enriched in different response regulator subfamilies, suggesting functional significance. IMPORTANCE: One protein family, defined by a conserved domain, can include hundreds of thousands of known members. Characterizing conserved residues within a conserved domain can identify functions shared by all family members. However, a general strategy to assess features that differ between members of a family is lacking. Fully exploring the impact of just two variable positions within a conserved domain could require assessment of 400 (i.e., 20 × 20) variants. Instead, we created and analyzed a nonredundant database of receiver domain sequences. Five percent of D + 2/T + 2 pairs were sufficient to represent 50% of receiver domain sequences. Using protein sequence analysis to prioritize mutant choice made it experimentally feasible to extensively probe the influence of positions D + 2 and T + 2 on receiver domain autodephosphorylation kinetics.


Assuntos
Sequência Conservada , Proteínas Quimiotáticas Aceptoras de Metil/genética , Transdução de Sinais/fisiologia , Substituição de Aminoácidos/genética , Domínio Catalítico/genética , Bases de Dados Factuais , Escherichia coli/fisiologia , Proteínas de Escherichia coli , Cinética , Proteínas Quimiotáticas Aceptoras de Metil/química , Mutação , Fosforilação , Domínios Proteicos , Estrutura Terciária de Proteína
15.
Biochemistry ; 54(22): 3514-27, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25928369

RESUMO

Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/enzimologia , Hidrolases , Proteínas de Membrana/química , Fosfoproteínas Fosfatases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/fisiologia
16.
Biochemistry ; 52(13): 2262-73, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23458124

RESUMO

In two-component signal transduction, response regulator proteins contain the catalytic machinery for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor kinase or autophosphorylate using various small molecule phosphodonors. Although response regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the kinetic determinants of the autophosphorylation reaction and how those determinants might vary for different response regulators and phosphodonors are largely unknown. We characterized the autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli CheY that contained substitutions primarily at nonconserved active site positions D + 2 (CheY residue 59) and T + 2 (CheY residue 89), two residues C-terminal to conserved D57 and T87, respectively. Overall, the CheY variants exhibited a >10(5)-fold range of rate constants (kphos/KS) for reaction with phosphoramidate, acetyl phosphate, or monophosphoimidazole, with the great majority of rates enhanced versus that of wild-type CheY. Although phosphodonor preference varied substantially, nearly all the CheY variants reacted faster with phosphoramidate than acetyl phosphate. Correlation between the increased positive charge of the D + 2 and T + 2 side chains and faster rates indicated electrostatic interactions are a kinetic determinant. Moreover, sensitivities of rate constants to ionic strength indicated that both long-range and localized electrostatic interactions influence autophosphorylation kinetics. The increased nonpolar surface area of the D + 2 and T + 2 side chains also correlated with an enhanced autophosphorylation rate, especially for reaction with phosphoramidate and monophosphoimidazole. Computer docking suggested that highly accelerated monophosphoimidazole autophosphorylation rates for CheY variants with a tyrosine at position T + 2 likely reflect structural mimicry of phosphotransfer from the sensor kinase histidyl phosphate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Amidas/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli , Imidazóis/metabolismo , Cinética , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Organofosfatos/metabolismo , Concentração Osmolar , Ácidos Fosfóricos/metabolismo , Fosforilação
17.
PLoS One ; 7(4): e36032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558313

RESUMO

Monoclonal antibodies (mAbs) can be potent and highly specific therapeutics, diagnostics and research reagents. Nonetheless, mAb discovery using current in vivo or in vitro approaches can be costly and time-consuming, with no guarantee of success. We have established a platform for rapid discovery and optimization of mAbs ex vivo. This DTLacO platform derives from a chicken B cell line that has been engineered to enable rapid selection and seamless maturation of high affinity mAbs. We have validated the DTLacO platform by generation of high affinity and specific mAbs to five cell surface targets, the receptor tyrosine kinases VEGFR2 and TIE2, the glycoprotein TROP2, the small TNF receptor family member FN14, and the G protein-coupled receptor FZD10. mAb discovery is rapid and humanization is straightforward, establishing the utility of the DTLacO platform for identification of mAbs for therapeutic and other applications.


Assuntos
Anticorpos Monoclonais/imunologia , Redes Reguladoras de Genes/genética , Óperon Lac/genética , Repressores Lac/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Afinidade de Anticorpos/imunologia , Linhagem Celular , Galinhas , Células Clonais , Regiões Determinantes de Complementaridade/genética , Sequência Conservada/genética , Engenharia Genética , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Dados de Sequência Molecular , Mutação/genética , Receptores de Superfície Celular/imunologia , Estreptavidina/imunologia
18.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 12-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20057044

RESUMO

MolProbity is a structure-validation web service that provides broad-spectrum solidly based evaluation of model quality at both the global and local levels for both proteins and nucleic acids. It relies heavily on the power and sensitivity provided by optimized hydrogen placement and all-atom contact analysis, complemented by updated versions of covalent-geometry and torsion-angle criteria. Some of the local corrections can be performed automatically in MolProbity and all of the diagnostics are presented in chart and graphical forms that help guide manual rebuilding. X-ray crystallography provides a wealth of biologically important molecular data in the form of atomic three-dimensional structures of proteins, nucleic acids and increasingly large complexes in multiple forms and states. Advances in automation, in everything from crystallization to data collection to phasing to model building to refinement, have made solving a structure using crystallography easier than ever. However, despite these improvements, local errors that can affect biological interpretation are widespread at low resolution and even high-resolution structures nearly all contain at least a few local errors such as Ramachandran outliers, flipped branched protein side chains and incorrect sugar puckers. It is critical both for the crystallographer and for the end user that there are easy and reliable methods to diagnose and correct these sorts of errors in structures. MolProbity is the authors' contribution to helping solve this problem and this article reviews its general capabilities, reports on recent enhancements and usage, and presents evidence that the resulting improvements are now beneficially affecting the global database.


Assuntos
Cristalografia por Raios X/métodos , Ácidos Nucleicos/química , Proteínas/química , Software , Automação Laboratorial , Cristalização , Cristalografia por Raios X/instrumentação , Processamento Eletrônico de Dados , Controle de Qualidade , Reprodutibilidade dos Testes , Projetos de Pesquisa
19.
J Mol Biol ; 388(5): 1033-42, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19361515

RESUMO

Hsp90 chaperones contain an N-terminal ATP binding site that has been effectively targeted by competitive inhibitors. Despite the myriad of inhibitors, none to date have been designed to bind specifically to just one of the four mammalian Hsp90 paralogs, which are cytoplasmic Hsp90alpha and beta, endoplasmic reticulum GRP94, and mitochondrial Trap-1. Given that each of the Hsp90 paralogs is responsible for chaperoning a distinct set of client proteins, specific targeting of one Hsp90 paralog may result in higher efficacy and therapeutic control. Specific inhibitors may also help elucidate the biochemical roles of each Hsp90 paralog. Here, we present side-by-side comparisons of the structures of yeast Hsp90 and mammalian GRP94, bound to the pan-Hsp90 inhibitors geldanamycin (Gdm) and radamide. These structures reveal paralog-specific differences in the Hsp90 and GRP94 conformations in response to Gdm binding. We also report significant variation in the pose and disparate binding affinities for the Gdm-radicicol chimera radamide when bound to the two paralogs, which may be exploited in the design of paralog-specific inhibitors.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Proteínas de Membrana , Acetanilidas/química , Acetanilidas/metabolismo , Animais , Benzoatos/química , Benzoatos/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Sítios de Ligação , Cristalização , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/metabolismo , Ligantes , Macrolídeos/química , Macrolídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Terciária de Proteína , Eletricidade Estática , Difração de Raios X
20.
J Struct Funct Genomics ; 10(1): 83-93, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19002604

RESUMO

Misfit sidechains in protein crystal structures are a stumbling block in using those structures to direct further scientific inference. Problems due to surface disorder and poor electron density are very difficult to address, but a large class of systematic errors are quite common even in well-ordered regions, resulting in sidechains fit backwards into local density in predictable ways. The MolProbity web site is effective at diagnosing such errors, and can perform reliable automated correction of a few special cases such as 180 degrees flips of Asn or Gln sidechain amides, using all-atom contacts and H-bond networks. However, most at-risk residues involve tetrahedral geometry, and their valid correction requires rigorous evaluation of sidechain movement and sometimes backbone shift. The current work extends the benefits of robust automated correction to more sidechain types. The Autofix method identifies candidate systematic, flipped-over errors in Leu, Thr, Val, and Arg using MolProbity quality statistics, proposes a corrected position using real-space refinement with rotamer selection in Coot, and accepts or rejects the correction based on improvement in MolProbity criteria and on chi angle change. Criteria are chosen conservatively, after examining many individual results, to ensure valid correction. To test this method, Autofix was run and analyzed for 945 representative PDB files and on the 50S ribosomal subunit of file 1YHQ. Over 40% of Leu, Val, and Thr outliers and 15% of Arg outliers were successfully corrected, resulting in a total of 3,679 corrected sidechains, or 4 per structure on average. Summary Sentences: A common class of misfit sidechains in protein crystal structures is due to systematic errors that place the sidechain backwards into the local electron density. A fully automated method called "Autofix" identifies such errors for Leu, Val, Thr, and Arg and corrects over one third of them, using MolProbity validation criteria and Coot real-space refinement of rotamers.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligação de Hidrogênio , Modelos Moleculares , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...