Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407722

RESUMO

Soil improvement via MICP (microbially induced carbonate precipitation) technologies has recently received widespread attention in the geoenvironmental and geotechnical fields. The durability of MICP-treated samples remains a critical concern in this novel method. In this work, fiber (jute)-reinforced MICP-treated samples were investigated to evaluate their durability under exposure to distilled water (DW) and artificial seawater (ASW), so as to advance the understanding of long-term performance mimicking real field conditions, along with improvement of the MICP-treated samples for use in coastal erosion protection. Primarily, the results showed that the addition of fiber (jute) improved the durability of the MICP-treated samples by more than 50%. Results also showed that the wet-dry (WD) cyclic process resulted in adverse effects on the mechanical and physical characteristics of fiber-reinforced MICP-treated samples in both DW and ASW. The breakdown of calcium carbonates and bonding effects in between the sand particles was discovered to be involved in the deterioration of MICP samples caused by WD cycles, and this occurs in two stages. The findings of this study would be extremely beneficial to extend the insight and understanding of improvement and durability responses for significant and effective MICP treatments and/or re-treatments.

2.
Materials (Basel) ; 13(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967316

RESUMO

The microbial-induced carbonate precipitation (MICP) method has gained intense attention in recent years as a safe and sustainable alternative for soil improvement and for use in construction materials. In this study, the effects of the addition of plant-based natural jute fibers to MICP-treated sand and the corresponding microstructures were measured to investigate their subsequent impacts on the MICP-treated biocemented sand. The fibers used were at 0%, 0.5%, 1.5%, 3%, 5%, 10%, and 20% by weight of the sand, while the fiber lengths were 5, 15, and 25 mm. The microbial interactions with the fibers, the CaCO3 precipitation trend, and the biocemented specimen (microstructure) were also evaluated based on the unconfined compressive strength (UCS) values, scanning electron microscopy (SEM), and fluorescence microscopy. The results of this study showed that the added jute fibers improved the engineering properties (ductility, toughness, and brittleness behavior) of the biocemented sand using MICP method. Furthermore, the fiber content more significantly affected the engineering properties of the MICP-treated sand than the fiber length. In this study, the optimal fiber content was 3%, whereas the optimal fiber length was s 15 mm. The SEM results indicated that the fiber facilitated the MICP process by bridging the pores in the calcareous sand, reduced the brittleness of the treated samples, and increased the mechanical properties of the biocemented sand. The results of this study could significantly contribute to further improvement of fiber-reinforced biocemented sand in geotechnical engineering field applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...