Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(38): 45367-45377, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704018

RESUMO

In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

2.
Biointerphases ; 17(5): 058501, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316165

RESUMO

Protein-based underwater adhesives of marine organisms exhibit extraordinary binding strength in high salinity based on utilizing a variety of molecular interaction mechanisms. These include acid-base interactions, bidentate bindings or complex hydrogen bonding interactions, and electrochemical manipulation of interfacial bonding. In this Perspective, we briefly review recent progress in the field, and we discuss how interfacial electrochemistry can vary interfacial forces by concerted tuning of surface charging, hydration forces, and tuning of the interfacial ion concentration. We further discuss open questions, controversial findings, and new paths into understanding and utilizing redox-proteins and derived polymers for enhancing underwater adhesion in a complex salt environment.


Assuntos
Adesivos , Bivalves , Animais , Adesivos/química , Bivalves/química , Proteínas/química , Ligação de Hidrogênio , Polímeros
3.
ACS Phys Chem Au ; 1(1): 45-53, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34939072

RESUMO

Function and properties at biologic as well as technological interfaces are controlled by a complex and concerted competition of specific and unspecific binding with ions and water in the electrolyte. It is not possible to date to directly estimate by experiment the interfacial binding energies of involved species in a consistent approach, thus limiting our understanding of how interactions in complex (physiologic) media are moderated. Here, we employ a model system utilizing polymers with end grafted amines interacting with a negatively charged mica surface. We measure interaction forces as a function of the molecule density and ion concentration in NaCl solutions. The measured adhesion decreases by about 90%, from 0.01 to 1 M electrolyte concentration. We further demonstrate by molecular resolution imaging how ions increasingly populate the binding surface at elevated concentrations, and are effectively competing with the functional group for a binding site. We demonstrate that a competing Langmuir isotherm model can describe this concentration-dependent competition. Further, based on this model we can quantitatively estimate ion binding energies, as well as binding energy relationships at a complex solid|liquid interface. Our approach enables the extraction of thermodynamic interaction energies and kinetic parameters of ionic species during monolayer level interactions at a solid|liquid interface, which to-date is impossible with other techniques.

4.
Biointerphases ; 16(6): 061002, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969252

RESUMO

Catechol reaction mechanisms form the basis of marine mussel adhesion, allowing for bond formation and cross-linking in wet saline environments. To mimic mussel foot adhesion and develop new bioadhesive underwater glues, it is essential to understand and learn to control their redox activity as well as their chemical reactivity. Here, we study the electrochemical characteristics of functionalized catechols to further understand their reaction mechanisms and find a stable and controllable molecule that we subsequently integrate into a polymer to form a highly adhesive hydrogel. Contradictory to previous hypotheses, 3,4-dihydroxy-L-phenylalanine is shown to follow a Schiff-base reaction whereas dopamine shows an intramolecular ring formation. Dihydrocaffeic acid proved to be stable and was substituted onto a poly(allylamine) backbone and electrochemically cross-linked to form an adhesive hydrogel that was tested using a surface forces apparatus. The hydrogel's compression and dehydration dependent adhesive strength have proven to be higher than in mussel foot proteins (mfp-3 and mfp-5). Controlling catechol reaction mechanisms and integrating them into stable electrochemically depositable macroscopic structures is an important step in designing new biological coatings and underwater and biomedical adhesives.


Assuntos
Bivalves , Adesivos Teciduais , Adesivos , Animais , Catecóis , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...