Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1127311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008481

RESUMO

Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.

2.
Front Plant Sci ; 13: 881188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774812

RESUMO

The ensuing heat stress drastically affects wheat plant growth and development, consequently compromising its grain yield. There are many thermoregulatory processes/mechanisms mediated by ion channels, lipids, and lipid-modifying enzymes that occur in the plasma membrane and the chloroplast. With the onset of abiotic or biotic stresses, phosphoinositide-specific phospholipase C (PI-PLC), as a signaling enzyme, hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which is further phosphorylated into phosphatidic acid (PA) as a secondary messenger and is involved in multiple processes. In the current study, a phospholipase C (PLC) signaling pathway was investigated in spring wheat (Triticum aestivum L.) and evaluated its four AtPLC5 overexpressed (OE)/transgenic lines under heat and osmotic stresses through 32Pi radioactive labeling. Naturally, the wheat harbors only a small amount of PIP2. However, with the sudden increase in temperature (40°C), PIP2 levels start to rise within 7.5 min in a time-dependent manner in wild-type (Wt) wheat. While the Phosphatidic acid (PA) level also elevated up to 1.6-fold upon exposing wild-type wheat to heat stress (40°C). However, at the anthesis stage, a significant increase of ∼4.5-folds in PIP2 level was observed within 30 min at 40°C in AtPLC5 over-expressed wheat lines. Significant differences in PIP2 level were observed in Wt and AtPLC5-OE lines when treated with 1200 mM sorbitol solution. It is assumed that the phenomenon might be a result of the activation of PLC/DGK pathways. Together, these results indicate that heat stress and osmotic stress activate several lipid responses in wild-type and transgenic wheat and can explain heat and osmotic stress tolerance in the wheat plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...