Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010347

RESUMO

Complex high-dimensional datasets that are challenging to analyze are frequently produced through '-omics' profiling. Typically, these datasets contain more genomic features than samples, limiting the use of multivariable statistical and machine learning-based approaches to analysis. Therefore, effective alternative approaches are urgently needed to identify features-of-interest in '-omics' data. In this study, we present the molecular feature selection tool, a novel, ensemble-based, feature selection application for identifying candidate biomarkers in '-omics' data. As proof-of-principle, we applied the molecular feature selection tool to identify a small set of immune-related genes as potential biomarkers of three prostate adenocarcinoma subtypes. Furthermore, we tested the selected genes in a model to classify the three subtypes and compared the results to models built using all genes and all differentially expressed genes. Genes identified with the molecular feature selection tool performed better than the other models in this study in all comparison metrics: accuracy, precision, recall, and F1-score using a significantly smaller set of genes. In addition, we developed a simple graphical user interface for the molecular feature selection tool, which is available for free download. This user-friendly interface is a valuable tool for the identification of potential biomarkers in gene expression datasets and is an asset for biomarker discovery studies.

2.
Pac Symp Biocomput ; 27: 373-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890164

RESUMO

Next-generation sequencing has provided rapid collection and quantification of 'big' biological data. In particular, multi-omics and integration of different molecular data such as miRNA and mRNA can provide important insights to disease classification and processes. There is a need for computational methods that can correctly model and interpret these relationships, and handle the difficulties of large-scale data. In this study, we develop a novel method of representing miRNA-mRNA interactions to classify cancer. Specifically, graphs are designed to account for the interactions and biological communication between miRNAs and mRNAs, using message-passing and attention mechanisms. Patient-matched miRNA and mRNA expression data is obtained from The Cancer Genome Atlas for 12 cancers, and targeting information is incorporated from TargetScan. A Graph Transformer Network (GTN) is selected to provide high interpretability of classification through self-attention mechanisms. The GTN is able to classify the 12 different cancers with an accuracy of 93.56% and is compared to a Graph Convolutional Network, Random Forest, Support Vector Machine, and Multilayer Perceptron. While the GTN does not outperform all of the other classifiers in terms of accuracy, it allows high interpretation of results. Multi-omics models are compared and generally outperform their respective single-omics performance. Extensive analysis of attention identifies important targeting pathways and molecular biomarkers based on integrated miRNA and mRNA expression.


Assuntos
MicroRNAs , Neoplasias , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...