Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Maxillofac Surg ; 76(10): 2138-2150, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29684308

RESUMO

PURPOSE: This study compared the degradation profile, safety, and efficacy of bioresorbable magnesium alloy and polylactide-co-glycolide (PLGA) polymer osteosynthesis systems for the treatment of fractures in a load-sharing maxillofacial environment using a new mini-swine fracture fixation model. MATERIALS AND METHODS: Two types of clinically relevant situations were evaluated in 5 Yucatan miniature pigs. Defined porcine midface osteotomies of the supraorbital rim and zygoma were created and fixed with either a coated magnesium (test animals) or PLGA plate and screw osteosynthesis system (control animals). After surgery, the mini-pigs were able to recover for either 1 or 9 months with continuous in vivo post-implantation monitoring. Standardized computed tomography (CT) imaging was taken immediately postoperatively and at termination for all animals. The 9-month cohort also underwent CT at 2, 4, and 6 months after surgery. At necropsy, osteotomy sites and bone-implant units were harvested, and healing was evaluated by micro-CT, histopathology, and histomorphometry. RESULTS: After clinical and radiologic follow-up examination, all fracture sites healed well for both the magnesium and polymer groups regardless of time point. Complete bone union and gradually disappearing osteotomy lines were observed across all implantation sites, with no major consistency change in periprosthetic soft tissue or in soft tissue calcification. Macroscopic and microscopic examination showed no negative influence of gas formation observed with magnesium during the healing process. Histopathologic analysis showed similar fracture healing outcomes for both plating systems with good biocompatibility as evidenced by a minimal or mild tissue reaction. CONCLUSIONS: This study confirms that WE43 magnesium alloy exhibited excellent fracture healing properties before its full degradation without causing any substantial inflammatory reactions in a long-term porcine model. Compared with PLGA implants, magnesium represents a promising new biomaterial with reduced implant sizes and improved mechanical properties to support fracture healing in a load-sharing environment.


Assuntos
Placas Ósseas , Remodelação Óssea/fisiologia , Parafusos Ósseos , Fixação Interna de Fraturas/métodos , Consolidação da Fratura/fisiologia , Osteotomia/métodos , Tomografia Computadorizada por Raios X/métodos , Zigoma/diagnóstico por imagem , Zigoma/cirurgia , Implantes Absorvíveis , Ligas , Animais , Materiais Biocompatíveis , Fixação Interna de Fraturas/instrumentação , Magnésio , Teste de Materiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Suínos , Porco Miniatura
2.
J Craniomaxillofac Surg ; 45(6): 862-871, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28457825

RESUMO

Magnesium alloys are candidates for resorbable material in bone fixation. However, the degradation and performance of osteosynthesis plate/screw systems in vivo, under cyclic deformation, is unknown. We evaluated the outcomes of human standard-sized magnesium plate/screw systems with or without plasma-electrolytic surface modifications in a miniature pig rib model. Of a total of 14 minipigs, six were implanted with coated magnesium WE43 six-hole plates/screws, six received magnesium uncoated plates/screws, and two received titanium osteosynthesis systems. The performance of the plate/screw fixation system on partially osteotomized 7th ribs was compared with that on intact 9th ribs. Radiological examinations were performed in vivo at 1, 4 and 8 weeks and after euthanasia at 12 and 24 weeks. After euthanasia the bone blocks were analyzed by computed tomography (CT), microfocus computed tomography (micro-CT), histology and histomorphometry. Follow-up post-surgery showed no trouble with wound healing. In vivo radiological examinations showed higher amounts of gas formation above the uncoated magnesium plates fixed on the partially osteotomized and intact ribs. CT scans showed no broken plates or implant displacement. The micro-CT examination demonstrated better surrounding bone properties around the coated than the uncoated magnesium implants 12 weeks after surgery. No negative influence of magnesium degradation on bone healing was observed with histological examinations. Plastic deformation during surgery and cyclic deformation did not affect the integrity of the used magnesium plates. This study showed promising results for the further development of coated magnesium plate/screw systems for bone fixation.


Assuntos
Placas Ósseas , Parafusos Ósseos , Osteotomia/instrumentação , Costelas/cirurgia , Animais , Magnésio , Modelos Animais , Costelas/diagnóstico por imagem , Suínos , Porco Miniatura , Tomografia Computadorizada por Raios X , Cicatrização/fisiologia , Microtomografia por Raio-X
3.
Mater Sci Eng C Mater Biol Appl ; 69: 247-54, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612710

RESUMO

Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12weeks and for the remaining seven animals at 24weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation.


Assuntos
Parafusos Ósseos , Magnésio/química , Ligas/química , Animais , Regeneração Óssea , Mandíbula/diagnóstico por imagem , Mandíbula/patologia , Modelos Animais , Suínos , Porco Miniatura , Titânio/química , Microtomografia por Raio-X
4.
J Craniomaxillofac Surg ; 44(3): 309-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26805919

RESUMO

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.


Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas , Animais , Placas Ósseas , Magnésio , Suínos , Porco Miniatura
5.
J Biomed Mater Res A ; 81(4): 964-70, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17252551

RESUMO

Open-pore titanium foams are produced using the so-called space holder method. The mechanical properties of titanium foams with porosities of 50-80% are studied. The stiffness and yield strength of the foams are found to encompass the property range between cancellous bone and cortical bone. The analyzed foams are found to be anisotropic due to the use of nonspherical space holder particles which rearrange during the compaction of the powder mixture. The titanium foams are stronger perpendicular to the compaction direction and weaker along the compaction axis. In view of the application as an implant material in the lumbar spine, an intermediate porosity of 60-65% is analyzed more in detail. The typical yield strength of titanium foam with 62.5% porosity is above 60 MPa in compression, bending, and tension. Stiffness values vary with the testing method from 7-14 GPa.


Assuntos
Titânio/química , Força Compressiva , Humanos , Região Lombossacral , Permeabilidade , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...