Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(2): 023510, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859055

RESUMO

A signal separation system is constructed on the multi-pass Thomson scattering system of Heliotron J to solve the problem of overlapping scattered light signals for the electron temperature anisotropy measurement. The phenomenon of overlapping scattered light signals is relieved by operating the signal separation system. A Raman scattering experiment is undertaken to verify the separation effect of the signal separation system. Two scattered light signals corresponding to two adjacent incidences of one laser shot were extended to 104 ns. Moreover, we applied the multi-pass Thomson scattering system with signal separation system to the electron temperature anisotropy measurement. No anisotropy was observed within the error bars in the initial experiment.

2.
Rev Sci Instrum ; 94(1): 013503, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725559

RESUMO

This paper proposes a design of dual scattering angles multi-path Thomson scattering system with a signal separation function to solve the overlapping phenomenon of scattered light signals and to increase the measurement accuracy for the investigation of anisotropic electron velocity distribution. Furthermore, an optical path design is proposed to demonstrate how overlapping scattered light signals can be separated by setting the optical path in a limited room with a compact layout, which makes the incident interval between two overlapping scattered light signals 1.7 times longer than that of our current system. The specific position of each optical component existing in the system is determined via a Gaussian beam analysis to avoid damage caused by overexpansion of spot size with the application of two cooperating image relay systems. Conversely, a polychromator is optimized by resetting the pass waveband of the interference filter combination to achieve high accuracy in electron temperature (Te) measurement corresponding to two scattering angles simultaneously.

3.
Sci Rep ; 12(1): 19799, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509803

RESUMO

High-spatial resolution observation of high-wavenumber broadband turbulence is achieved by controlling the magnetic field to be relatively low and measuring with a azimuthally arranged multi-channel Langmuir array in a basic laboratory plasma. The observed turbulence consists of narrowband low-frequency fluctuations and broadband high-frequency turbulent fluctuations. The low-frequency fluctuations have a frequency of about 0.7 times the ion cyclotron frequency and a spatial scale of 1/10 of the ion inertial scale. In comparison, high-frequency fluctuations have a higher frequency than the ion cyclotron frequency and spatial scales of 1/10-1/40 of the ion inertial scale. Two-dimensional correlation analysis evaluates the spatial and temporal correlation lengths and reveals that the high-wavenumber broadband fluctuations have turbulent characteristics. The measurements give us further understanding of small scale turbulence in space and fusion plasmas.

4.
Sci Rep ; 11(1): 3720, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608562

RESUMO

A tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.

5.
Rev Sci Instrum ; 82(3): 033503, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21456733

RESUMO

A new radially movable multichannel azimuthal probe system has been developed for measuring azimuthal and radial profiles of electrostatic Reynolds stress (RS) per mass density of microscale fluctuations for a cylindrical laboratory plasma. The system is composed of 16 probe units arranged azimuthally. Each probe unit has six electrodes to simultaneously measure azimuthal and radial electric fields for obtaining RS. The advantage of the system is that each probe unit is radially movable to measure azimuthal RS profiles at arbitrary radial locations as well as two-dimensional structures of fluctuations. The first result from temporal observation of fluctuation azimuthal profile presents that a low-frequency fluctuation (1-2 kHz) synchronizes oscillating Reynolds stress. In addition, radial scanning of the probe system simultaneously demonstrates two-dimensional patterns of mode structure and nonlinear forces with frequency f = 1.5 kHz and azimuthal mode number m = 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...