Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2305067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858925

RESUMO

Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.

3.
J Org Chem ; 88(20): 14820-14825, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812078

RESUMO

Distyrylbenzene derivatives with substituents on the vinylene moieties have been studied due to interest in their optoelectronic properties. In this study, we focused on distyrylbenzene derivatives with monofluoroolefin structures, expecting intermolecular H-F interactions in the solid state. UV-vis and fluorescence spectra of the obtained compounds were measured and compared with those of unsubstituted distyrylbenzene. The crystal structures of each compound were determined by single crystal X-ray diffraction and Hirshfeld surface analysis to understand the intermolecular contacts.

4.
Des Monomers Polym ; 26(1): 190-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426066

RESUMO

The donor-acceptor type π-conjugated polymers having heterole units were prepared by the reaction of a regioregular organometallic polymer having both reactive titanacyclopentadiene and electron-donor thiophene-2,5-diyl units in the main chain with electrophiles such as diphenyltin dichloride, dichlorophenylphosphine, and diiodophenylarsine. For example, a polymer having electron-accepting phosphole unit was obtained in 54% yield whose number-average molecular weight (Mn) and molecular weight distribution (Mw/Mn) were estimated as 3,000 and 1.9, respectively. The obtained polymer exhibits a high highest occupied molecular orbital (HOMO) and low lowest unoccupied molecular orbital (LUMO) energy levels (-5.13 eV and -3.25 eV, respectively) due to the electron-donating thiophene and electron-accepting phosphole units. Reflecting upon the alternating structure of thiophene and phosphole, the polymer exhibits a band gap energy level (Eg) of 1.78 eV which is narrower than that of a derivative of poly(thiophene) (Eg = 2.25 eV).

5.
Angew Chem Int Ed Engl ; 62(40): e202307343, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37294142

RESUMO

Imine-based covalent organic frameworks (COFs) are crystalline porous materials with prospective uses in various devices. However, general bulk synthetic methods usually produce COFs as powders that are insoluble in most of the common organic solvents, arising challenges for the subsequent molding and fixing of these materials on substrates. Here, we report a novel synthetic methodology that utilizes an electrogenerated acid (EGA), which is produced at an electrode surface by electrochemical oxidation of a suitable precursor, acting as an effective Brønsted acid catalyst for imine bond formation from the corresponding amine and aldehyde monomers. Simultaneously, it provides the corresponding COF film deposited on the electrode surface. The COF structures obtained with this method exhibited high crystallinities and porosities, and the film thickness could be controlled. Furthermore, such process was applied for the synthesis of various imine-based COFs, including a three-dimensional (3D) COF structure.

6.
Org Lett ; 25(21): 3951-3955, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37222538

RESUMO

Here, a facile and selective synthesis method for cationic azatriphenylene derivatives was established by electrochemical intramolecular cyclization, where atom-economical C-H pyridination without a transition-metal catalyst or an oxidant is a key step. The proposed protocol is a practical strategy for the late-stage introduction of cationic nitrogen (N+) into π-electron systems and broadens the scope of molecular design of N+-doped polycyclic aromatic hydrocarbons.

7.
Chem Sci ; 14(10): 2669-2675, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908965

RESUMO

Cathodic synthesis provides sustainable access to 1-hydroxy- and 1-oxy-quinazolin-4-ones from easily accessible nitro starting materials. Mild reaction conditions, inexpensive and reusable carbon-based electrode materials, an undivided electrochemical setup, and constant current conditions characterise this method. Sulphuric acid is used as a simple supporting electrolyte as well as a catalyst for cyclisation. The broad applicability of this protocol is demonstrated in 27 differently substituted derivatives in high yields of up to 92%. Moreover, mechanistic studies based on cyclic voltammetry measurements highlight a selective reduction of the nitro substrate to hydroxylamine as a key step. The relevance for preparative applications is demonstrated by a 100-fold scale-up for gram-scale electrolysis.

8.
Langmuir ; 39(12): 4450-4455, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919992

RESUMO

Recently, alternating current (AC)-bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) has been reported to produce poly(3,4-ethylenedioxythiophene) (PEDOT) fibers from the terminals of bipolar electrodes in acetonitrile solution (MeCN) containing low concentrations of supporting salts in a template-free manner. Here, we extend such methodology in ionic liquid (IL) media. Three kinds of ILs, diethylmethyl(2-methoxyethyl)ammonium tetrafluoroborate ([DEME][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([DEME][TFSI]), with different electric field transmission efficiencies and diffusion coefficients were employed as solvents for the AC-bipolar electropolymerization of EDOT. A variety of PEDOT morphologies were obtained in these three ILs, showing a relationship with the physicochemical properties of the ILs. We successfully confirmed the growth of PEDOT fibers in ILs and systematically discussed the factors that influenced their growth.

9.
Anal Chem ; 95(2): 1532-1540, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36563173

RESUMO

As an effective approach for materials synthesis, bipolar electrochemistry has been earning a renewed interest nowadays thanks to its unique features compared to conventional electrochemistry. Indeed, the wireless mode of electrode reactions and the generation of a gradient potential distribution above the bipolar electrode are among the most appealing qualities of bipolar electrochemistry. In particular, the gradient potential distribution is a highly attractive characteristic for the fabrication of surfaces with gradients in their chemical properties or molecular functionalities. Herein, we report the high-throughput electrosynthesis of gradient polypyrrole films by means of a new electrochemical cell design named the single-electrode electrochemical system (SEES). SEESs are made by attaching an inert plastic board with holes onto an indium tin oxide electrode, constructing multiple microelectrochemical cells on the same electrode. This type of arrangement enables parallel electrochemical reactions to be carried out simultaneously and controlled in a contactless manner by a single electrode. Several experimental conditions for polypyrrole film growth were extensively investigated. Furthermore, the gradient property of the polymer films was evaluated by thickness determination, surface morphology analysis, and contact angle measurements. The use of SEES has been demonstrated as a convenient and cost-effective strategy for high-throughput electrosynthesis and electroanalytical applications and has opened up a new door for gradient film preparation via a rapid condition screening process.

11.
Beilstein J Org Chem ; 18: 872-880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957754

RESUMO

The cathodic reduction of bromodifluoromethyl phenyl sulfide (1) using o-phthalonitrile as a mediator generated the (phenylthio)difluoromethyl radical, which reacted with α-methylstyrene and 1,1-diphenylethylene to provide the corresponding adducts in moderate and high yields, respectively. In contrast, chemical reduction of 1 with SmI2 resulted in much lower product yields. The detailed reaction mechanism was clarified based on the cathodic reduction of 1 in the presence of deuterated acetonitrile, CD3CN.

12.
Commun Chem ; 5(1): 66, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-36697589

RESUMO

Electrifying synthesis is now a common slogan among synthetic chemists. In addition to the conventional two- or three-electrode systems that use batch-type cells, recent progress in organic electrochemical processes has been significant, including microflow electrochemical reactors, Li-ion battery-like technology, and bipolar electrochemistry. Herein we demonstrate an advanced electrosynthesis method without the application of electric power based on the concept of streaming potential-driven bipolar electrochemistry. As a proof-of-concept study, the electrochemical oxidative polymerization of aromatic monomers successfully yielded the corresponding polymer films on an electrode surface, which acted as an anode under the flow of electrolyte in a microchannel without an electric power supply.

13.
J Org Chem ; 86(22): 16128-16133, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34197111

RESUMO

Fundamental properties of alkali metal fluorides (MF, M = Cs, K) dissolved in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) or in 3,3,3-trifluoroethanol (TFE) are investigated, including solubility, conductivity, and viscosity. Solid-state structures of single crystals obtained from CsF/HFIP and CsF/TFE are described for the first time, giving insights into the multiple interactions between fluorinated alcohols and CsF. Applications in electrochemical fluorination reactions are successfully demonstrated.

14.
Chem Commun (Camb) ; 57(52): 6360-6363, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34105536

RESUMO

A novel electron-deficient macrocycle, pillar[6]quinone (P[Q]6), has been synthesized for the first time by both chemical and electrochemical oxidation of pillar[6]arene, showing clear hexagonal columnar stacking in the solid state. Cathodic voltammetric studies of P[Q]6 revealed that three electrons are injected first, followed by stepwise one-electron reductions.

15.
Anal Chem ; 93(23): 8152-8160, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081445

RESUMO

Bipolar electrochemistry has been regarded as a powerful and sustainable electrochemical process for the synthesis of novel functional materials. The appealing features of this electrochemical technology, such as the wireless nature of the bipolar electrode (BPE) and the possibility to drive simultaneously electrochemical reactions on multiple BPEs placed in the same electrochemical cell, together with the possibility to change the shape and positioning of the driving electrodes, give significant freedom to design reaction systems. Nevertheless, the cell geometry dramatically affects the distribution and intensity of the potential gradient generated on the BPE surface and its monitoring is hampered due to the wireless nature of the BPE. In the present study, we propose the use of electrochemiluminescence (ECL) as an electrochemical imaging technique to map the distribution of potential gradient in bipolar electrochemical cells with different geometries. The proposed approach exploits the strong ECL emission of luminol/hydrogen peroxide (H2O2) system generated at the anodic pole of the BPE, when the total applied voltage (Etot) is strong enough to trigger the electrochemical reaction. Since luminol ECL emission is rather intense and relatively stable, the evolution of the potential distribution as a function of Etot can be monitored using a digital camera, allowing the elucidation of the potential distribution profile in every bipolar configuration. The suggested approach represents a valuable and reliable method to map the potential gradient in bipolar electrochemical systems and can be readily employed in every type of bipolar configuration.


Assuntos
Técnicas Biossensoriais , Luminol , Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes
16.
Chem Rec ; 21(9): 2107-2119, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33835681

RESUMO

Electrochemical doping of conducting polymers (CPs) generates polarons (radical ionic species) and bipolarons (ionic species) in their backbone via multi-electron transfer between an electrode and the CP. In the electrochemical polymer reaction (ePR), these generated ionic species are regarded as reactive intermediates for further transformation of the chemical structures of CPs. This electrochemical post-functionalization can easily be used to control the degree of reactions by turning a power supply on/off, as well as tuning the applied electrode potential, which leads to fine-tuning of the various properties of the CPs, such as the HOMO/LUMO level and PL properties. This Account summarizes recent developments in the electrochemical post-functionalization of CPs. In particular, we focus on reaction design for the ePR, with respect to the preparation and structure of the precursor polymers, applicable functional groups, efficient reaction conditions, and electrolytic methodologies.

17.
Angew Chem Int Ed Engl ; 60(26): 14620-14629, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830611

RESUMO

Bipolar electrochemistry could be regarded as a powerful approach for selective surface modification due to the beneficial feature that a wirelessly controllable potential distribution on bipolar electrodes (BPEs). Herein we report a bipolar electrolytic micelle disruption (BEMD) system for the preparation of shaped organic films. A U-shaped bipolar electrolytic system with a sigmoidal potential gradient on the BPE gave gradient-thin films including various interesting organic compounds, such as a polymerizable monomer, an organic pigment and aggregation induced emission (AIE) molecules. The gradient feature was characterized by UV-Vis absorption, thickness measurements and surface morphology analysis. Corresponding patterned films were also fabricated using a cylindrical bipolar electrolytic setup that enables site-selective application of the potential on the BPE. Such a facile BEMD approach will open a long-term perspective with respect to organic film preparation.

18.
Dalton Trans ; 50(8): 3037-3043, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33570054

RESUMO

The synthesis of a polymer containing alternating titanafluorene and arylene ethynylene moieties is described. The polymerization of a 2,7-dibromo-9-titanafluorene derivative with 1,4-dioctyloxy-2,5-diethynylbenzene is carried out at 70 °C for 48 h in tetrahydrofuran (THF) in the presence of palladium dichloride/4,5-bis(diphenylphosphino)-9,9-dimethylxanthene as a catalyst and diisopropylamine as a base to produce a dark red polymer. The polymer thus obtained is soluble in organic solvents and stable towards both air and moisture. In the UV-vis absorption spectrum of the polymer, the absorption maxima (λmax) are observed at 321 nm and 395 nm, which are bathochromically shifted compared to those of a model compound of the repeating unit, a 2,7-bis(phenylethynyl)titanafluorene derivative (λmax = 309 nm and 364 nm). The optical band gap (Eg) of the polymer is estimated to be 2.8 eV on the basis of the absorption onset, which is narrower than that of the model compound (3.1 eV).

19.
Chem Commun (Camb) ; 56(92): 14327-14336, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33079097

RESUMO

Bipolar electrochemistry, which refers to an electrochemical system at a wireless electrode driven under an applied electric field, has been recognized as not only a simple subset of conventional electrosynthetic systems but a reaction system with a highly unique nature. One notable feature is the presence of the electrophoretic effect due to the low electrolyte concentration. The electrophoresis enhances the mass transfer of ionic species in a specific direction, thus enabling the efficient construction of anisotropic materials. In this Feature Article, we summarized our recent reports on the fabrication of anisotropic conductive polymer fibers and films via bipolar electrochemistry in synergy with the electrophoretic effect.

20.
Dalton Trans ; 49(37): 12985-12989, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32813754

RESUMO

Synthesis of 1,2-bis(pentafluorophenyl)-o-carborane and its arylthio-derivatives is reported. The regioselective arylthiolation was successfully achieved via nucleophilic aromatic substitution (SNAr) reaction. A series of bis(perfluoroaryl)-o-carboranes with various para-substituents showed strong multicolor emission in the solid-state (Φf up to 47%), suggesting an aggregation-induced emission (AIE) character in this motif.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...