Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 188: 105235, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464352

RESUMO

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) is the most economically important mite pest in agricultural areas and chemical acaricides are widely used to control T. urticae populations. Cyflumetofen is a recently introduced acaricide that inhibits the mitochondrial electron transport chain at complex II (succinate dehydrogenase, SDH), which represents the most recently developed mode of action for mite control worldwide. In the present study, started upon the launch of cyflumetofen in Turkey, a five-year survey was performed to monitor cyflumetofen susceptibility in 28 T. urticae populations collected from agricultural fields across the country. The first resistance case that might cause control failure in practical field conditions was uncovered in 2019, three years after the registration of cyflumetofen. In addition, an extremely resistant population (1722-fold resistance) was also detected towards the end of 2019. Cyflumetofen resistance did not decrease in the laboratory after relaxation of selection pressure for over one year in field-collected populations, suggesting the absence of a fitness cost associated with resistance in these populations. Next to phenotypic resistance, metabolic and physiological mechanisms underlying the decreased susceptibility were also investigated. Synergism assays showed the involvement of P450 monooxygenases in cyflumetofen resistance. Downregulation of carboxylesterases as resistance mechanism, is underpinned by the fact that pre-treatment with esterase inhibitor DEF decreased cyflumetofen toxicity in field-collected strains. Furthermore, a novel H258L substitution in the subunit B of complex II was uncovered in a field population. In silico modeling of the new mutation suggested that the mutation might indeed influence toxicity to complex II inhibitors cyenopyrafen and pyflubumide, but most likely not cyflumetofen. However, further studies are needed to uncover the exact role of this mutation in resistance to this new class of complex II inhibitors.


Assuntos
Acaricidas , Tetranychidae , Animais , Tetranychidae/genética , Turquia , Propionatos/toxicidade , Acaricidas/farmacologia
2.
Pest Manag Sci ; 77(10): 4741-4748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34151488

RESUMO

BACKGROUND: Tuta absoluta is a devastating pest in tomato production areas worldwide. After its first introduction to Turkey in 2009, it quickly became the major pest of tomato-growing areas. Although some biocontrol agents have been used, especially in greenhouses, the main control of T. absoluta relies heavily on chemical insecticides. However, failure in chemical control has often been reported due to resistance development. In this study, we investigated (i) the population structure of 22 T. absoluta populations across Turkey by analysing haplotypes, based on the cytochrome oxidase subunit I gene; (ii) the efficacy of three registered insecticides from different classes (metaflumizone, chlorantraniliprole and spinosad) in real field-greenhouse conditions; and (iii) the geographic distribution of target-site mutations associated with insecticide resistance. RESULTS: The efficacy of spinosad was higher than that of chlorantraniliprole and metaflumizone in the greenhouse trials, as documented by the mortality rates obtained, up to 14 days post application. Known resistance mutations in ryanodine receptors (RyR) (i.e. the I4790M/K and G4946E), nicotinic acetylcholine receptors (G275E), acetylcholinesterases (A201S) and voltage-gated sodium channels (F1845Y and V1848I) were found at various frequencies across the populations genotyped. The I4790K diamide resistance mutation in the RyR has been reported for the first time in T. absoluta populations. Although a total of eight haplotypes were found, the overall mean genetic distance was lower than 0.001, indicating the high genetic homogeneity among Turkish T. absoluta populations. CONCLUSION: The results will contribute to design area-wide resistance management programs in T. absoluta control in Turkey. However, more monitoring studies are needed to implement evidence-based insecticide resistance management strategies in the frame of integrated pest management. © 2021 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Solanum lycopersicum , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...