Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(10): 3239-3251, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245048

RESUMO

Caffeine is a characteristic bioactive compound in tea and coffee plants, which is synthesized and accumulated extensively in leaves and seeds. However, little is known about the regulatory mechanism of caffeine synthesis in plants. This study compared the caffeine metabolite between tea and coffee plants. We found that tea leaves contained significantly higher caffeine than coffee leaves, which is perhaps due to more members of N-methyltransferase (NMT) genes as well as higher expression levels in tea plants. Substantial numbers of transcription factors were predicted to be involved in caffeine biosynthesis regulation, combining weighted gene co-expression network analysis and the cis-element of NMT promoter analysis in tea and coffee plants. Furthermore, analysis of the transcription factors from the caffeine-related modules suggested that the regulatory mechanism of caffeine biosynthesis was probably partly conservative in tea and coffee plants. This study provides an essential resource for the regulatory mechanism of caffeine biosynthesis in plants.


Assuntos
Cafeína , Camellia sinensis , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Café/metabolismo , Perfilação da Expressão Gênica , Chá/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...