Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 201: 114387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944210

RESUMO

Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.


Assuntos
Ipilimumab , Luz , Concentração de Íons de Hidrogênio , Ipilimumab/administração & dosagem , Ipilimumab/farmacologia , Desdobramento de Proteína , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação , Estabilidade Proteica , Estabilidade de Medicamentos , Desnaturação Proteica , Temperatura , Humanos , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Melanoma/tratamento farmacológico
2.
Biofactors ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801346

RESUMO

Parkinson's disease (PD) stands as a challenging neurodegenerative condition characterized by the emergence of Lewy Bodies (LBs), intracellular inclusions within dopaminergic neurons. These LBs harbor various proteins, prominently including α-Synuclein (Syn) aggregates, implicated in disease pathology. A promising avenue in PD treatment involves targeting Syn aggregation. Recent findings from our research have shown that 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET) possess the ability to impede the formation of Syn fibrils by disrupting the aggregation process. Notably, these compounds primarily engage in noncovalent interactions with the protein, leading to the formation of off-pathway oligomers that deter fibril growth. Through proteolysis studies and mass spectrometry (MS) analysis, we have identified potential covalent modifications of Syn in the presence of DOPAC, although the exact site remains elusive. Employing molecular dynamics simulations, we delved into how DOPAC-induced covalent alterations might affect the mechanism of Syn aggregation. Our findings indicate that the addition of a covalent adduct on certain residues enhances fibril flexibility without compromising its secondary structure stability. Furthermore, in the monomeric state, the modified residue fosters novel bonding interactions, thereby influencing long-range interactions between the N- and C-termini of the protein.

3.
Int J Pharm ; 654: 123926, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401872

RESUMO

In the last years, monoclonal antibodies (mAbs) have rapidly escalated as biopharmaceuticals into cancer treatments, mainly for their target specificity accompanied by less side effects than the traditional chemotherapy, and stimulation of reliable long-term anti-tumoral responses. They are potentially unstable macromolecules under shaking, temperature fluctuations, humidity, and indoor and outdoor light exposure, all stressors occurring throughout their production, transport, storage, handling, and administration steps. The chemical and physical modifications of mAbs can lead not only to the loss of their bioactivity, but also to the enhancement of their immunogenicity with increasing risk of severe hypersensitivity reactions in treated patients because of aggregation. The photostability of Nivolumab, the active principle of Opdivo®, has been here studied. The chemical modifications detected by LC-MS/MS after the light stressor showed Trp and Met mono and double oxidations as primary damage induced by light on this mAb. The oxidations were stronger when the mAb was diluted in sterile glucose solution where 5-HMF, a major heat glucose degradation product, acted as singlet oxygen producer under irradiation. However, no significant changes in the mAb conformation were found. On the contrary, formation of a significant extent of aggregates has been detected after shining high simulated sunlight doses. This again took place particularly when Nivolumab was diluted in sterile glucose, thus raising a direct correlation between the aggregation and the oxidative processes. Finally, the biological activity under light stress assessed by a blockade assay test demonstrated the maintenance of the PD-1 target recognition even under high light doses and in glucose solution, in line with the preservation of the secondary and tertiary structures of the mAb. Based on our results, as sterile glucose is mostly used for children's therapies, special warnings, and precautions for healthcare professionals should be included for their use to the pediatric population.


Assuntos
Glucose , Nivolumabe , Criança , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...