Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(3): 669-687, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542455

RESUMO

Post-hypoxia sympathoexcitation does not elicit corresponding changes in vascular tone, suggesting diminished sympathetic signalling. Blunted sympathetic transduction following acute hypoxia, however, has not been confirmed and the effects of hypoxia on the sympathetic transduction of mean arterial pressure (MAP) as a function of action potential (AP) activity is unknown. We hypothesized that MAP changes would be blunted during acute hypoxia but restored in recovery and asynchronous APs would elicit smaller MAP changes than synchronous APs. Seven healthy males (age: 24 (3) years; BMI: 25 (3) kg/m2 ) underwent 20 min isocapnic hypoxia (PET O2 : 47 (2) mmHg) and 30 min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 7 min) and late (last 7 min) recovery. AP groups were classified as synchronous APs, asynchronous APs (occurring outside an MSNA burst) and no AP activity. Sympathetic transduction of MAP was quantified using signal-averaging, with ΔMAP tracked following AP group cardiac cycles. Following synchronous APs, ΔMAP was reduced in hypoxia (+1.8 (0.9) mmHg) and early recovery (+1.5 (0.7) mmHg) compared with baseline (+3.1 (2.2) mmHg). AP group-by-condition interactions show that at rest asynchronous APs attenuate MAP reductions compared with no AP activity (-0.4 (1.1) vs. -2.2 (1.2) mmHg, respectively), with no difference between AP groups in hypoxia, early or late recovery. Sympathetic transduction of MAP is blunted in hypoxia and early recovery. At rest, asynchronous sympathetic APs contribute to neural regulation of MAP by attenuating nadir pressure responses. KEY POINTS: Acute isocapnic hypoxia elicits lasting sympathoexcitation that does not correspond to parallel changes in vascular tone, suggesting blunted sympathetic transduction. Signal-averaging techniques track the magnitude and temporal cardiovascular responses following integrated muscle sympathetic nerve activity (MSNA) burst and non-burst cardiac cycles. However, this does not fully characterize the effects of sympathetic action potential (AP) activity on blood pressure control. We show that hypoxia blunts the sympathetic transduction of mean arterial pressure (MAP) following synchronous APs that form integrated MSNA bursts and that sympathetic transduction of MAP remains attenuated into early recovery. At rest, asynchronous APs attenuate the reduction in MAP compared with cardiac cycles following no AP activity, thus asynchronous sympathetic APs appear to contribute to the neural regulation of blood pressure. The results advance our understanding of sympathetic transduction of arterial pressure during and following exposure to acute isocapnic hypoxia in humans.


Assuntos
Pressão Arterial , Hipóxia , Masculino , Humanos , Adulto Jovem , Adulto , Potenciais de Ação , Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/irrigação sanguínea , Frequência Cardíaca/fisiologia
3.
J Physiol ; 600(13): 3127-3147, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661360

RESUMO

Baroreflex resetting permits sympathetic long-term facilitation (sLTF) following hypoxia; however, baroreflex control of action potential (AP) clusters and AP recruitment patterns facilitating sLTF is unknown. We hypothesized that baroreflex resetting of arterial pressure operating points (OPs) of AP clusters and recruitment of large-amplitude APs would mediate sLTF following hypoxia. Eight men (age: 24 (3) years; body mass index: 24 (3) kg/m2 ) underwent 20 min isocapnic hypoxia ( PETO2${P_{{\rm{ET}}{{\rm{O}}_{\rm{2}}}}}$ : 47 (2) mmHg) and 30 min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and a continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 5 min), and late recovery (last 5 min). AP amplitude (normalized to largest baseline AP amplitude), percentage APs occurring outside a MSNA burst (percentage asynchronous APs), and proportion of APs firing in small (1-3), medium (4-6) and large (7-10) normalized cluster sizes was calculated. Normalized clusters were used to assess baroreflex OPs and sensitivity. Hypoxia increased total MSNA activity, which remained elevated during recovery (P < 0.0001). Baroreflex OPs were shifted rightward for all clusters in recovery, with no effect on slope. Compared to baseline, AP amplitude was elevated by 3 (2)% and 4 (2)% while asynchronous APs were reduced by 9 (5)% and 7 (6)% in early and late recovery, respectively. In early recovery, the proportion of APs firing in large clusters was increased compared to baseline. Hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. KEY POINTS: Acute isocapnic hypoxia resets the arterial baroreflex and permits long-lasting sympathoexcitation, termed sympathetic long-term facilitation. Our understanding of sympathetic long-term facilitation following hypoxia in humans is based on multiunit muscle sympathetic nerve activity and does not fully characterize the underlying baroreflex control of sympathetic neuronal subpopulations or their discharge/recruitment strategies. We show that sympathetic long-term facilitation is mediated by baroreflex resetting of sympathetic action potential clusters to higher arterial pressure operating points, a reduction in the percentage of action potentials firing asynchronously, and a shift toward larger amplitude action potential activity. The results advance our fundamental understanding of how the sympathetic nervous system mediates sympathetic long-term facilitation following exposure to acute isocapnic hypoxia in humans.


Assuntos
Barorreflexo , Sistema Nervoso Simpático , Potenciais de Ação , Adulto , Pressão Arterial , Barorreflexo/fisiologia , Pressão Sanguínea , Frequência Cardíaca , Humanos , Hipóxia , Masculino , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto Jovem
4.
J Appl Physiol (1985) ; 133(3): 534-545, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771223

RESUMO

Cerebral hypoxia is a serious consequence of several cardiorespiratory illnesses. Measuring the retinal microvasculature at high altitude provides a surrogate for cerebral microvasculature, offering potential insight into cerebral hypoxia in critical illness. In addition, although sex-specific differences in cardiovascular diseases are strongly supported, few have focused on differences in ocular blood flow. We evaluated the retinal microvasculature in males (n = 11) and females (n = 7) using functional optical coherence tomography at baseline (1,130 m) (day 0), following rapid ascent (day 2), and prolonged exposure (day 9) to high altitude (3,800 m). Retinal vascular perfusion density (rVPD; an index of total blood supply), retinal thickness (RT; reflecting vascular and neural tissue volume), and arterial blood were acquired. As a group, rVPD increased on day 2 versus day 0 (P < 0.001) and was inversely related to [Formula: see text] (R2 = 0.45; P = 0.006). By day 9, rVPD recovered to baseline but was significantly lower in males than in females (P = 0.007). RT was not different on day 2 versus day 0 (P > 0.99) but was reduced by day 9 relative to day 0 and day 2 (P < 0.001). RT changes relative to day 0 were inversely related to changes in [Formula: see text] on day 2 (R2 = 0.6; P = 0.001) and day 9 (R2 = 0.4; P = 0.02). RT did not differ between sexes. These data suggest differential time course and regulation of the retina during rapid ascent and prolonged exposure to high altitude and are the first to demonstrate sex-specific differences in rVPD at high altitude. The ability to assess intact microvasculature contiguous with the brain has widespread research and clinical applications.NEW & NOTEWORTHY Measuring the retinal microvasculature at high altitude provides a surrogate for cerebral microvasculature, offering potential insight into consequence of cerebral hypoxia in critical illness. This study demonstrates dynamic regulation of the retina during rapid ascent and prolonged exposure to high altitude and is the first to demonstrate sex-specific differences in retinal microvasculature at high altitude. The ability to dynamically assess intact microvasculature contiguous with the brain has widespread research and clinical applications.


Assuntos
Doença da Altitude , Hipóxia Encefálica , Altitude , Estado Terminal , Feminino , Humanos , Masculino , Perfusão , Retina , Tomografia de Coerência Óptica
6.
Cardiovasc Res ; 118(15): 3052-3070, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34734981

RESUMO

The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system. Located within the walls of the aortic arch and carotid sinuses, and/or astrocytes in the brain, these mechanosensors are essential for the rapid moment-to-moment feedback regulation of blood pressure (BP). Growing evidence suggests that these mechanosensors form a co-existing system of peripheral and central baroreflexes. Despite the importance of these molecules in cardiovascular disease and decades of research, their precise molecular identity remains elusive. The uncertainty surrounding the identity of these mechanosensors presents a major challenge in understanding basic baroreceptor function and has hindered the development of novel therapeutic targets for conditions with known arterial baroreflex impairments. Therefore, the purpose of this review is to (i) provide a brief overview of arterial and central baroreflex control of BP, (ii) review classes of ion channels currently proposed as the baroreflex mechanosensor, namely Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo, along with additional molecular candidates that serve mechanotransduction in other organ systems, and (iii) summarize the potential clinical implications of impaired baroreceptor function in the pathophysiology of cardiovascular disease.


Assuntos
Canais Iônicos Sensíveis a Ácido , Doenças Cardiovasculares , Humanos , Canais Iônicos Sensíveis a Ácido/genética , Canais Epiteliais de Sódio/genética , Mecanotransdução Celular
7.
Am J Physiol Heart Circ Physiol ; 321(4): H798-H806, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506224

RESUMO

Signal-averaged sympathetic transduction of blood pressure (BP) is inversely related to resting muscle sympathetic nerve activity (MSNA) burst frequency in healthy cohorts. Whether this represents a physiological compensatory adaptation or a methodological limitation, remains unclear. The current analysis aimed to determine the contribution of methodological limitations by evaluating the dependency of MSNA transduction at different levels of absolute BP. Thirty-six healthy participants (27 ± 7 yr, 9 females) underwent resting measures of beat-to-beat heart rate, BP, and muscle sympathetic nerve activity (MSNA). Tertiles of mean arterial pressure (MAP) were computed for each participant to identify cardiac cycles occurring below, around, and above the MAP operating pressure (OP). Changes in hemodynamic variables were computed across 15 cardiac cycles within each MAP tertile to quantify sympathetic transduction. MAP increased irrespective of sympathetic activity when initiated below the OP, but with MSNA bursts provoking larger rises (3.0 ± 0.9 vs. 2.1 ± 0.7 mmHg; P < 0.01). MAP decreased irrespective of sympathetic activity when initiated above the OP, but with MSNA bursts attenuating the drop (-1.3 ± 1.1 vs. -3.1 ± 1.2 mmHg; P < 0.01). In participants with low versus high resting MSNA (12 ± 4 vs. 32 ± 10 bursts/min), sympathetic transduction of MAP was not different when initiated by bursts below (3.2 ± 1.0 vs. 2.8 ± 0.9 mmHg; P = 0.26) and above the OP (-1.0 ± 1.3 vs. -1.6 ± 0.8 mmHg; P = 0.08); however, low resting MSNA was associated with a smaller proportion of MSNA bursts firing above the OP (15 ± 5 vs. 22 ± 5%; P < 0.01). The present analyses demonstrate that the signal-averaging technique for calculating sympathetic transduction of BP is influenced by the timing of an MSNA burst relative to cyclic oscillations in BP.NEW & NOTEWORTHY The current signal-averaging technique for calculating sympathetic transduction of blood pressure does not consider the arterial pressure at which each muscle sympathetic burst occurs. A burst firing when mean arterial pressure is above the operating pressure was associated with a decrease in blood pressure. Thus, individuals with higher muscle sympathetic nerve activity demonstrate a reduced sympathetic transduction owing to the weighted contribution of more sympathetic bursts at higher levels of arterial pressure.


Assuntos
Pressão Arterial , Sistema Cardiovascular/inervação , Músculo Esquelético/inervação , Descanso , Sistema Nervoso Simpático/fisiologia , Adulto , Determinação da Pressão Arterial , Impedância Elétrica , Eletrodiagnóstico , Feminino , Humanos , Masculino , Fotopletismografia , Fatores de Tempo , Adulto Jovem
8.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R484-R494, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287075

RESUMO

Calculating the blood pressure (BP) response to a burst of muscle sympathetic nerve activity (MSNA), termed sympathetic transduction, may be influenced by an individual's resting burst frequency. We examined the relationships between sympathetic transduction and MSNA in 107 healthy males and females and developed a normalized sympathetic transduction metric to incorporate resting MSNA. Burst-triggered signal averaging was used to calculate the peak diastolic BP response following each MSNA burst (sympathetic transduction of BP) and following incorporation of MSNA burst cluster patterns and amplitudes (sympathetic transduction slope). MSNA burst frequency was negatively correlated with sympathetic transduction of BP (r = -0.42; P < 0.01) and the sympathetic transduction slope (r = -0.66; P < 0.01), independent of sex. MSNA burst amplitude was unrelated to sympathetic transduction of BP in males (r = 0.04; P = 0.78), but positively correlated in females (r = 0.44; P < 0.01) and with the sympathetic transduction slope in all participants (r = 0.42; P < 0.01). To control for MSNA, the linear regression slope of the log-log relationship between sympathetic transduction and MSNA burst frequency was used as a correction exponent. In subanalysis of males (38 ± 10 vs. 14 ± 4 bursts/min) and females (28 ± 5 vs. 12 ± 4 bursts/min) with high versus low MSNA, sympathetic transduction of BP and sympathetic transduction slope were lower in participants with high MSNA (all P < 0.05). In contrast, normalized sympathetic transduction of BP and normalized sympathetic transduction slope were similar in males and females with high versus low MSNA (all P > 0.22). We propose that incorporating MSNA burst frequency into the calculation of sympathetic transduction will allow comparisons between participants with varying levels of resting MSNA.


Assuntos
Potenciais de Ação , Pressão Sanguínea , Sistema Cardiovascular/inervação , Eletromiografia , Músculo Esquelético/inervação , Processamento de Sinais Assistido por Computador , Sistema Nervoso Simpático/fisiologia , Adolescente , Adulto , Determinação da Pressão Arterial , Eletrocardiografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
9.
Auton Neurosci ; 235: 102842, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246957

RESUMO

Coronavirus-19 (COVID-19), the infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has wreaked havoc across the globe since its emergence in December 2019. Reports of patients presenting with syncope and pre-syncope, as well as hypoxemia without symptoms of dyspnea ("silent hypoxemia"), have led researchers to speculate whether SARS-CoV-2 can alter autonomic nervous system function. As viral infections are commonly reported triggers of altered autonomic control, we must consider whether SARS-CoV-2 can also interfere with autonomic activity, at least in some patients. As we are still in the early stages of understanding COVID-19, we still do not know whether syncope and silent hypoxemia are more strongly associated with COVID-19 compared to any other viral infections that severely compromise gas exchange. Therefore, in this perspective we discuss these two intriguing clinical presentations, as they relate to autonomic nervous system function. In our discussion, we will explore COVID-specific, as well as non-COVID specific mechanisms that may affect autonomic activity and potential therapeutic targets. As we move forward in our understanding of COVID-19, well-designed prospective studies with appropriate control and comparator groups will be necessary to identify potential unique effects of COVID-19 on autonomic function.


Assuntos
Doenças do Sistema Nervoso Autônomo/complicações , COVID-19/complicações , Hipóxia/complicações , Síncope/complicações , Doenças do Sistema Nervoso Autônomo/fisiopatologia , COVID-19/fisiopatologia , Humanos , Hipóxia/fisiopatologia , Síncope/fisiopatologia
10.
Med Sci Sports Exerc ; 53(11): 2233-2244, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081056

RESUMO

PURPOSE: In normotensive patients with obstructive sleep apnea (OSA), the muscle sympathetic nerve activity (MSNA) response to exercise is increased while metaboreflex control of MSNA is decreased. We tested the hypotheses that acute intermittent hypercapnic hypoxia (IHH) in males free from OSA and associated comorbidities would augment the MSNA response to exercise but attenuate the change in MSNA during metaboreflex activation. METHODS: Thirteen healthy males (age = 24 ± 4 yr) were exposed to 40 min of IHH. Before and after IHH, the pressor response to exercise was studied during 2 min of isometric handgrip exercise (at 30% maximal voluntary contraction), whereas the metaboreflex was studied during 4 min of postexercise circulatory occlusion (PECO). Mean arterial pressure (MAP), heart rate (HR), and fibular MSNA were recorded continuously. MSNA was quantified as burst frequency (BF) and total activity (TA). Mixed effects linear models were used to compare the exercise pressor and metaboreflex before and after IHH. RESULTS: As expected, IHH led to significant increases in MSNA BF, TA, and MAP at baseline and throughout exercise and PECO. However, during handgrip exercise, the change from baseline in MAP, HR, MSNA BF, and TA was similar before and after IHH (All P > 0.31). During PECO, the change from baseline in MSNA BF and TA was similar after IHH, whereas the change from baseline in MAP (Δ14 mm Hg, 95% CI = 7-19, vs Δ16 mm Hg, 95% CI = 10-21; P < 0.01) was modestly increased. CONCLUSION: After acute IHH, MSNA response to handgrip exercise and metaboreflex activation were preserved in healthy young males despite overall increases in resting MSNA and MAP. Chronic IHH and comorbidities often associated with OSA may be required to modulate the exercise pressor reflex and metaboreflex.


Assuntos
Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Reflexo , Sistema Nervoso Simpático/fisiologia , Adulto , Humanos , Masculino , Contração Muscular , Apneia Obstrutiva do Sono/fisiopatologia , Adulto Jovem
11.
J Neurophysiol ; 126(1): 170-180, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133241

RESUMO

A small proportion of postganglionic muscle sympathetic single units can be inhibited during sympathoexcitatory stressors in humans. However, whether these responses are dependent on the specific stressor or the level of sympathoexcitation remains unclear. We hypothesize that, when matched by sympathoexcitatory magnitude, different stressors can evoke similar proportions of inhibited single units. Multiunit and single-unit muscle sympathetic nerve activity (MSNA) were recorded in seven healthy young males at baseline and during 1) rhythmic handgrip exercise (40% of maximum voluntary contraction) and 2) acute isocapnic hypoxia (partial pressure of end-tidal O2 47 ± 3 mmHg). Single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. By design, rhythmic handgrip and isocapnic hypoxia similarly increased multiunit total MSNA [Δ273 ± 208 vs. Δ254 ± 193 arbitrary units (AU), P = 0.84] and single-unit spike frequency (Δ8 ± 10 vs. Δ12 ± 13 spikes/min, P = 0.12). Among 19 identified single units, the proportions of activated (47% vs. 68%), nonresponsive (32% vs. 16%), and inhibited (21% vs. 16%) single units were not different between rhythmic handgrip and isocapnic hypoxia (P = 0.42). However, only 9 (47%) single units behaved with concordant response patterns across both stressors (7 activated, 1 nonresponsive, and 1 inhibited during both stressors). During the 1-min epoch with the highest increase in total MSNA during hypoxia (Δ595 ± 282 AU, P < 0.01) only one single unit was inhibited. These findings suggest that the proportions of muscle sympathetic single units inhibited during stress are associated with the level of sympathoexcitation and not the stressor per se in healthy young males.NEW & NOTEWORTHY Subpopulations of muscle sympathetic single units can be inhibited during mild sympathoexcitatory stress. We demonstrate that rhythmic handgrip exercise and isocapnic hypoxia, when matched by multiunit sympathoexcitation, induce similar proportions of single-unit inhibition, highlighting that heterogeneous single-unit response patterns are related to the level of sympathoexcitation independent of the stressor type. Interestingly, only 47% of single units behaved with concordant response patterns between stressors, suggesting the potential for functional specificity within the postganglionic neuronal pool.


Assuntos
Potenciais de Ação/fisiologia , Fibras Adrenérgicas/fisiologia , Exercício Físico/fisiologia , Força da Mão/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/fisiologia , Adulto , Hemodinâmica/fisiologia , Humanos , Masculino , Periodicidade , Adulto Jovem
13.
Nature ; 590(7845): 308-314, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505019

RESUMO

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Assuntos
Barorreflexo , Biomimética , Hemodinâmica , Próteses e Implantes , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Vias Neurais , Primatas , Ratos , Ratos Endogâmicos Lew , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia
14.
Appl Physiol Nutr Metab ; 46(7): 790-796, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33428519

RESUMO

The current study evaluated the influence of resting muscle sympathetic nerve activity (MSNA) burst size and firing pattern on time-to-peak sympathetic transduction in 36 young healthy men and women. Participants underwent a 5-10 min resting baseline with beat-to-beat measures of heart rate, mean arterial pressure (MAP), and MSNA (microneurography). Cardiac output and total vascular conductance were calculated using the Modelflow algorithm. Sympathetic transduction was quantified using the burst-triggered signal averaging technique to examine the changes in MAP, cardiac output, and total vascular conductance for 15 cardiac cycles after each MSNA burst or non-burst. A stepwise increase in the peak MAP (i.e., sympathetic transduction) was observed throughout all quartiles of normalized MSNA burst area (quartile 1 (Q1): 1.7 ± 1.3 mm Hg; Q2: 2.1 ± 1.3 mm Hg; Q3: 2.6 ± 1.4 mm Hg; Q4: 3.5 ± 1.4 mm Hg; P < 0.01). The largest quartile of normalized MSNA burst area demonstrated faster time-to-peak MAP responses (5.7 ± 2.5 s) than both Q1 (10.1 ± 3.9 s, P < 0.01) and Q2 (9.3 ± 4.1 s, P < 0.01), as well as, faster time-to-peak cardiac output and time-to-nadir total vascular conductance compared with Q1 and Q2 (All P < 0.05). Larger clusters of sympathetic bursts (i.e., triplets and ≥ quadruplets) did not have increased time-to-peak transduction compared with singlets and doublet bursts across all MSNA quartiles. These results highlight intraindividual variability in the time-course of sympathetic transduction and reveal an intrinsic property of larger sympathetic bursts to increase time-to-peak sympathetic transduction in humans. Novelty: Muscle sympathetic burst size can modulate time-to-peak sympathetic transduction in young healthy men and women. These observations appear independent of the pattern of sympathetic firing.


Assuntos
Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Algoritmos , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Fluxo Sanguíneo Regional/fisiologia , Estudos Retrospectivos , Caracteres Sexuais , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
15.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L331-L338, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404365

RESUMO

Acute respiratory distress syndrome and subsequent respiratory failure remains the leading cause of death (>80%) in patients severely impacted by COVID-19. The lack of clinically effective therapies for COVID-19 calls for the consideration of novel adjunct therapeutic approaches. Though novel antiviral treatments and vaccination hold promise in control and prevention of early disease, it is noteworthy that in severe cases of COVID-19, addressing "run-away" inflammatory cascades are likely more relevant for improvement of clinical outcomes. Viral loads may decrease in severe, end-stage coronavirus cases, but a systemically damaging cytokine storm persists and mediates multiple organ injury. Remote ischemic conditioning (RIC) of the limbs has shown potential in recent years to protect the lungs and other organs against pathological conditions similar to that observed in COVID-19. We review the efficacy of RIC in protecting the lungs against acute injury and current points of consideration. The beneficial effects of RIC on lung injury along with other related cardiovascular complications are discussed, as are the limitations presented by sex and aging. This adjunct therapy is highly feasible, noninvasive, and proven to be safe in clinical conditions. If proven effective in clinical trials for acute respiratory distress syndrome and COVID-19, application in the clinical setting could be immediately implemented to improve outcomes.


Assuntos
COVID-19/complicações , Precondicionamento Isquêmico/métodos , Síndrome do Desconforto Respiratório/prevenção & controle , SARS-CoV-2/isolamento & purificação , Humanos , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/virologia
16.
Am J Physiol Heart Circ Physiol ; 319(4): H787-H792, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857604

RESUMO

Fluctuations in diastolic pressure modulate muscle sympathetic nerve activity (MSNA) through the arterial baroreflex. A higher sympathetic baroreflex sensitivity (sBRS) to pressure falls compared with rises has been reported; however, the underlying mechanisms are unclear. We assessed whether beat-to-beat falling and rising diastolic pressures operate on two distinct baroreflex response curves. Twenty-two men (32 ± 8 yr) underwent sequential bolus injections of nitroprusside and phenylephrine (modified Oxford test) with continuous recording of heart rate, blood pressure, and MSNA. The weighted negative linear regression slope between falling or rising diastolic pressure and MSNA burst incidence quantified sBRSfall and sBRSrise, respectively. The diastolic pressure evoking a MSNA burst incidence of 50 (T50) was calculated. sBRSfall was greater than sBRSrise (-6.24 ± 2.80 vs. -4.34 ± 2.16 bursts·100 heartbeats-1·mmHg-1, P = 0.01) and had a narrower operating range (14 ± 8 vs. 20 ± 10 mmHg, P = 0.01) that was shifted rightward (T50, 75 ± 9 and 70 ± 11 mmHg, P < 0.001). At diastolic pressures below baseline, sBRSfall was less than sBRSrise (-1.81 ± 1.31 vs. -3.59 ± 1.70 bursts·100 heartbeats-1·mmHg-1, P = 0.003) as low absolute pressures operated closer to the saturation plateau on the falling, compared with the rising pressure curve. At pressures above baseline, sBRSfall was greater than sBRSrise (-5.23 ± 1.94 and -3.79 ± 1.67 bursts·100 heartbeats-1·mmHg-1, P = 0.03). These findings demonstrate that the sympathetic arterial baroreflex possesses two response curves for processing beat-to-beat diastolic pressure falls and rises. The falling pressure curve is rightward shifted, which reduces sensitivity to falling pressure at low absolute pressures. This demonstrates that the direction of the hysteresis is influenced by the prevailing pressure level relative to each baroreflex response curve.NEW & NOTEWORTHY The findings show that the arterial baroreflex processes diastolic pressure dependent on the direction of pressure change from the previous beat, yielding two distinct baroreflex response curves to falling and rising pressure. Overall, the falling pressure curve is rightward shifted and more sensitive. The rightward shift caused a hysteresis reversal at hypotensive pressures as the falling pressure saturation plateau of the sigmoid response curve occurred at higher pressures than the rising pressure curve.


Assuntos
Pressão Arterial , Barorreflexo , Frequência Cardíaca , Músculo Esquelético/inervação , Nervo Fibular/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Pressão Arterial/efeitos dos fármacos , Barorreflexo/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Fatores de Tempo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
17.
J Neurophysiol ; 124(3): 682-690, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32727266

RESUMO

Muscle sympathetic single units can respond differentially to stress, but whether these responses are linked to the degree of sympathoexcitation is unclear. Fifty-three muscle sympathetic single units (microneurography) were recorded in 17 participants (8 women; 24 ± 3 yr). Five 40-s bouts of 10% static handgrip were performed during a 10-min forearm ischemia to progressively increase metabolite accumulation. Each static handgrip was separated by a 75-s ischemic rest [postexercise circulatory occlusion (PECO)] to assess the isolated action of the muscle metaboreflex. During each set of PECO, individual single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. From sets 1-5 of PECO, the proportion of single units with activated (34, 45, 68, 87, and 89%), nonresponsive (43, 44, 23, 7, and 9%), or inhibited (23, 11, 9, 6, and 2%) responses changed (P < 0.001) as total muscle sympathoexcitation increased. A total of 51/53 (96%) single units were activated in at least one set of PECO, 16 (31%) initially inhibited before activation. This response pattern delayed the activation onset compared with noninhibited units (set 3 ± 1 vs. 2 ± 1, P < 0.001). Once activated, the spike-frequency rate of rise was similar (8.5 ± 6.5 vs. 7.1 ± 6.0 spikes/min per set, P = 0.48). Muscle sympathetic single-unit firing demonstrated differential control during muscle metaboreflex activation. Single units that were initially inhibited during progressive metaboreflex activation were capable of being activated in later sets. These findings reveal that single-unit activity is influenced by convergent neural inputs (i.e., both inhibitory and excitatory), which yield heterogenous single-unit activation thresholds.NEW & NOTEWORTHY Muscle sympathetic single units respond differentially to sympathoexcitatory stress such that single units can increase firing to contribute to the sympathoexcitatory response or can be nonresponsive or even inhibited. We observed a subgroup of single units that can respond bidirectionally, being first inhibited before activated by progressive increases in forearm muscle metaboreflex activation. These results suggest convergent neural inputs (i.e., inhibitory and excitatory), which yield heterogenous muscle sympathetic single-unit activation thresholds.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Eletromiografia , Feminino , Antebraço/fisiologia , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Jovem
18.
J Appl Physiol (1985) ; 129(2): 230-237, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32644911

RESUMO

This case study reports the efferent muscle sympathetic nerve activity (MSNA) discharge patterns during a sinus pause observed during a maximal end-expiratory apnea in a young healthy male (age = 26 yr). During a 15.3-s end-expiratory apnea following a bout of intermittent hypercapnic hypoxia, we observed a 5.2-s (R-R interval) sinus pause and integrated MSNA recording, demonstrating a square-wave discharge pattern atypical of sharp MSNA burst peaks entrained to cardiac cycles or during preventricular contractions. This abnormal MSNA discharge pattern was observed again during a follow-up experiment, where an end-expiratory apnea at baseline resulted in pronounced bradycardia (R-R intervals >2.5-s) but failed to reproduce the 5.2-s sinus pause. Action potential (AP) discharge patterns during MSNA bursts were detected using a continuous wavelet transform approach. AP discharge increased by 300% during the end-expiratory apnea with 5.2-s sinus pause compared with baseline and involved increased firing (i.e., rate-coding) of AP clusters (bins of AP with similar morphology) already present during baseline and pronounced recruitment of larger-amplitude AP clusters not present at baseline. Large-amplitude AP clusters continued to discharge during sinus pause. In summary, we show MSNA discharge during sinus pause and pronounced bradycardia during end-expiratory apnea, which demonstrates a square-wave discharge with recruitment of latent larger-amplitude AP clusters. The MSNA discharge was terminated before systole following sinus pause potentially through an inhibitory influence of inspiration, or cardiac mechanoreceptor feedback causing burst termination.NEW & NOTEWORTHY We characterize the occurrence of a square-wave discharge pattern of efferent muscle sympathetic nerve activity during a sinus pause in a young healthy male. This discharge pattern comprised large recruited action potential clusters undetected at baseline that continuously discharged during the sinus pause. Notably, this discharge pattern was still contained within a single cardiac cycle.


Assuntos
Suspensão da Respiração , Alta do Paciente , Potenciais de Ação , Adulto , Apneia , Pressão Sanguínea , Humanos , Masculino , Músculo Esquelético , Sistema Nervoso Simpático
19.
Am J Physiol Heart Circ Physiol ; 319(1): H213-H221, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502372

RESUMO

Muscle sympathetic nerve activity (MSNA) exhibits well-described within-breath respiratory modulation, but the interactive contributions of the arterial baroreflex remain unclear. The present study assessed 1) within-breath modulation of sympathetic baroreflex sensitivity (BRS) and 2) the effect of acute intermittent hypercapnic hypoxia (IHH) on within-breath sympathetic BRS and respiratory-sympathetic entrainment. Seventeen men (24 ± 4 yr) underwent an 8- to 10-min spontaneously breathing baseline while continuous measures of blood pressure (BP), heart rate, MSNA, ventilation, and end-tidal gases were collected. A subset of 12 participants subsequently underwent a 40-min IHH exposure composed of 40 consecutive 1-min breathing cycles: 40 s of hypercapnic hypoxia and 20 s of normoxia. Data were compared between inspiration and expiration and low and high lung volume (calculated from the integral of spirometry-derived flow). Sympathetic BRS was determined by the slope of the weighted linear regression between diastolic BP and MSNA burst incidence. Respiratory-sympathetic entrainment was quantified as percentage of MSNA bursts during each respiratory epoch relative to the total burst count. Sympathetic BRS was similar between inspiration and expiration (-3.9 ± 2.0 vs. -3.6 ± 1.8 bursts·100 heartbeats-1·mmHg-1; P = 0.61) but greater during low versus high lung volumes (-4.6 ± 2.3 vs. -2.1 ± 1.6 bursts·100 heartbeats-1·mmHg-1; P < 0.01). High (r = -0.64; P < 0.01)- but not low (r = -0.24; P = 0.35)-lung volume sympathetic BRS was associated with resting MSNA. IHH increased resting MSNA burst frequency (15 ± 7 vs. 20 ± 7 bursts/min; P < 0.01) and diastolic BP (68 ± 5 vs. 77 ± 9 mmHg; P = 0.02), without altering resting or within-breath sympathetic BRS or respiratory-sympathetic entrainment (all P > 0.05). These findings provide novel insight into the mechanisms controlling within-breath modulation of sympathetic outflow in humans.NEW & NOTEWORTHY In resting spontaneously breathing men, the present study observed that sympathetic baroreflex sensitivity (BRS) was higher during low versus high lung volumes but not different between inspiration and expiration. High- but not low-lung volume BRS was negatively associated with resting muscle sympathetic nerve activity (MSNA). Acute intermittent hypercapnic hypoxia increased resting MSNA and diastolic blood pressure, without altering within-breath BRS. These findings provide novel insight into mechanisms controlling within-breath modulation of MSNA in humans.


Assuntos
Barorreflexo , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Respiração , Adulto , Humanos , Pulmão/fisiologia , Pulmão/fisiopatologia , Masculino , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...