Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Virol ; 95(7): e28965, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37488710

RESUMO

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus. Here, we employed the genetic code expansion and engineered IFN-ß, a phase II clinical cytokine with 3-amino tyrosine (IFN-ß-A) that reactivates STAT2 expression in virus-infected human cells through JAK/STAT cell signaling without affecting signal activation and serum half-life. This study identified that genetically encoded IFN-ß-A might stabilize the protein-receptor complex and trigger JAK-STAT cell signaling, which is a promising modality for controlling SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Membrana Celular , Citocinas , Progressão da Doença
3.
Trends Biotechnol ; 41(2): 165-183, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35908989

RESUMO

Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.


Assuntos
Materiais Biocompatíveis , Código Genético , Proteínas/genética , Engenharia Genética , Aminoácidos/metabolismo , Aminas
4.
Bioorg Med Chem ; 50: 116460, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757293

RESUMO

Protein modifications through genetic code engineering have a remarkable impact on macromolecule engineering, protein translocation, protein-protein interaction, and cell biology. We used the newly developed molecular biology approach, genetic code engineering, for fine-tuning of proteins for biological availability. Here, we have introduced 3, 4-dihydroxy-l-phenylalanine in recombinant proteins by selective pressure incorporation method for protein-based cell labeling applications. The congener proteins treated with tyrosinase convert 3, 4-dihydroxy-l-phenylalanine to dopaquinone for strain-promoted click chemistry. Initially, the single-step Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-quinone Cycloaddition was studied using tyrosinase catalyzed congener protein and optimized the temporally controlled conjugation with (1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethanol. Then, the feasibility of tyrosinase-treated congener annexin A5 with easily reactive quinone functional moiety was conjugated with fluorescent tag dibenzocyclooctyne-PEG4-TAMRA for labeling of apoptotic cells. Thus, the congener proteins-based products demonstrate selective cell labeling and apoptosis detection in EA.hy926 cells even after the protein modifications. Hence, genetic code engineering can be coupled with click chemistry to develop various protein-based fluorescent labels.


Assuntos
Benzoquinonas/farmacologia , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Apoptose/efeitos dos fármacos , Benzoquinonas/química , Benzoquinonas/metabolismo , Células Cultivadas , Química Click , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Engenharia Genética , Humanos , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...