Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 14(1): 11207, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755197

RESUMO

The intention-to-treat (ITT) analysis of the Applying Wolbachia to Eliminate Dengue (AWED) trial estimated a protective efficacy of 77.1% for participants resident in areas randomised to receive releases of wMel-infected Aedes aegypti mosquitoes, an emerging dengue preventive intervention. The limiting assumptions of ITT analyses in cluster randomised trials and the mobility of mosquitoes and humans across cluster boundaries indicate the primary analysis is likely to underestimate the full public health benefit. Using spatiotemporally-resolved data on the distribution of Wolbachia mosquitoes and on the mobility of AWED participants (n = 6306), we perform complier-restricted and per-protocol re-examinations of the efficacy of the Wolbachia intervention. Increased intervention efficacy was estimated in all analyses by the refined exposure measures. The complier-restricted analysis returned an estimated efficacy of 80.7% (95% CI 65.9, 89.0) and the per-protocol analysis estimated 82.7% (71.7, 88.4) efficacy when comparing participants with an estimated wMel exposure of ≥ 80% compared to those with <20%. These reanalyses demonstrate how human and mosquito movement can lead to underestimation of intervention effects in trials of vector interventions and indicate that the protective efficacy of Wolbachia is even higher than reported in the primary trial results.


Assuntos
Aedes , Dengue , Wolbachia , Humanos , Aedes/microbiologia , Animais , Dengue/prevenção & controle , Dengue/transmissão , Mosquitos Vetores/microbiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise por Conglomerados , Controle de Mosquitos/métodos , Feminino
2.
BMJ Glob Health ; 8(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37989350

RESUMO

INTRODUCTION: Field trials and modelling studies suggest that elimination of dengue transmission may be possible through widespread release of Aedes aegypti mosquitoes infected with the insect bacterium Wolbachia pipientis (wMel strain), in conjunction with routine dengue control activities. This study aimed to develop a modelling framework to guide planning for the potential elimination of locally acquired dengue in Yogyakarta, a city of almost 400 000 people in Java, Indonesia. METHODS: A scenario-tree modelling approach was used to estimate the sensitivity of the dengue surveillance system (including routine hospital-based reporting and primary-care-based enhanced surveillance), and time required to demonstrate elimination of locally acquired dengue in Yogyakarta city, assuming the detected incidence of dengue decreases to zero in the future. Age and gender were included as risk factors for dengue, and detection nodes included the probability of seeking care, probability of sample collection and testing, diagnostic test sensitivity and probability of case notification. Parameter distributions were derived from health system data or estimated by expert opinion. Alternative simulations were defined based on changes to key parameter values, separately and in combination. RESULTS: For the default simulation, median surveillance system sensitivity was 0.131 (95% PI 0.111 to 0.152) per month. Median confidence in dengue elimination reached 80% after a minimum of 13 months of zero detected dengue cases and 90% confidence after 25 months, across different scenarios. The alternative simulations investigated produced relatively small changes in median system sensitivity and time to elimination. CONCLUSION: This study suggests that with a combination of hospital-based surveillance and enhanced clinic-based surveillance for dengue, an acceptable level of confidence (80% probability) in the elimination of locally acquired dengue can be reached within 2 years. Increasing the surveillance system sensitivity could shorten the time to first ascertainment of elimination of dengue and increase the level of confidence in elimination.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Indonésia/epidemiologia , Aedes/microbiologia , Incidência , Dengue/epidemiologia , Dengue/prevenção & controle
3.
PLOS Glob Public Health ; 3(6): e0000698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363894

RESUMO

COVID-19 case counts in Indonesia inevitably underestimate the true cumulative incidence of infection due to limited diagnostic test availability, barriers to testing accessibility and asymptomatic infections. Therefore, community-based serological data is essential for understanding the true prevalence of infections. This study aims to estimate the seroprevalence of SARS-CoV-2 infection and factors related to the seropositivity in Bantul Regency, Yogyakarta, Indonesia. A cross-sectional study involving 425 individuals in 40 clusters was conducted between March and April 2021. Participants were interviewed using an e-questionnaire developed in the Kobo toolbox to collect information on socio-demographic, COVID-19 suggestive symptoms, history of COVID-19 diagnosis and COVID-19 vaccination status. A venous blood sample was collected from each participant and tested for immunoglobulin G (Ig-G) SARS-CoV-2 antibody titers using the enzyme-linked immunosorbent assay (ELISA). Seroprevalence was 31.1% in the Bantul Regency: 34.2% in semi-urban and 29.9% in urban villages. Participants in the 55-64 age group demonstrated the highest seroprevalence (43.7%; p = 0.00), with a higher risk compared to the other age group (aOR = 3.79; 95% CI, 1.46-9.85, p<0.05). Seroprevalence in the unvaccinated participants was 29.9%. Family clusters accounted for 10.6% of the total seropositive cases. No significant difference was observed between seropositivity status, preventive actions, and mobility. Higher seroprevalence in semi-urban rather than urban areas indicates a gap in health services access. Surveillance improvement through testing, tracing, and treatment, particularly in areas with lower access to health services, and more robust implementation of health protocols are necessary.

4.
Glob Health Action ; 16(1): 2166650, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36700745

RESUMO

BACKGROUND: Releases of Wolbachia (wMel)-infected Aedes aegypti mosquitoes significantly reduced the incidence of virologically confirmed dengue in a previous cluster randomised trial in Yogyakarta City, Indonesia. Following the trial, wMel releases were extended to the untreated control areas, to achieve city-wide coverage of Wolbachia. OBJECTIVE: In this predefined analysis, we evaluated the impact of the wMel deployments in Yogyakarta on dengue hemorrhagic fever (DHF) case notifications and on the frequency of perifocal insecticide spraying by public health teams. METHODS: Monthly counts of DHF cases notified to the Yogyakarta District Health Office between January 2006 and May 2022 were modelled as a function of time-varying local wMel treatment status (fully- and partially-treated vs untreated, and by quintile of wMel prevalence). The frequency of insecticide fogging in wMel-treated and untreated areas was analysed using negative binomial regression. RESULTS: Notified DHF incidence was 83% lower in fully treated vs untreated periods (IRR 0.17 [95% CI 0.14, 0.20]), and 78% lower in areas with 80-100% wMel prevalence compared to areas with 0-20% wMel (IRR 0.23 [0.17, 0.30]). A similar intervention effect was observed at 60-80% wMel prevalence as at 80-100% prevalence (76% vs 78% efficacy, respectively). Pre-intervention, insecticide fogging occurred at similar frequencies in areas later randomised to wMel-treated and untreated arms of the trial. After wMel deployment, fogging occurred significantly less frequently in treated areas (IRR 0.17 [0.10, 0.30]). CONCLUSIONS: Deployments of wMel-infected Aedes aegypti mosquitoes resulted in an 83% reduction in the application of perifocal insecticide spraying, consistent with lower dengue case notifications in wMel-treated areas. These results show that the Wolbachia intervention effect demonstrated previously in a cluster randomised trial was also measurable from routine surveillance data.


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Wolbachia , Animais , Humanos , Dengue/epidemiologia , Dengue/prevenção & controle
5.
Infect Genet Evol ; 102: 105308, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644356

RESUMO

Dengue has been endemic in Yogyakarta, Indonesia for decades. Here, we report the dengue epidemiology, entomology, and virology in Yogyakarta in 2016-2017, prior to the commencement of the Applying Wolbachia to Eliminate Dengue (AWED) randomized trial. Dengue epidemiological data were compiled and blood samples from dengue-suspected patients were tested for dengue virus (DENV). Ae. aegypti mosquito samples were caught from the field using BG-Sentinel traps and tested for the presence of DENV infection. Sequencing of the DENV E gene was used to determine the phylogeny and genotypes of circulating DENV. Within the last decade, the 2016-2017 dengue incidence was considered very high. Among the 649 plasma samples collected between March 2016-February 2017; and 36,910 mosquito samples collected between December 2016-May 2017, a total of 197 and 38 samples were DENV-positive by qRT-PCR, respectively. All four DENV serotypes were detected, with DENV-3 (n = 88; 44.67%) and DENV-1 (n = 87; 44.16%) as the predominant serotype, followed by DENV-4 (n = 12; 6.09%) and DENV-2 (n = 10; 5.08%). The Yogyakarta DENV-1 isolates were classified into Genotype I and IV, while DENV-2, DENV-3, and DENV-4 isolates were classified into the Cosmopolitan genotype, Genotype I, and Genotype II, respectively. Yogyakarta DENV isolates were closely related to Indonesian strains from neighboring Javanese cities, consistent with the endemic circulation of DENV on this highly populous island. Our study provides comprehensive baseline information on the DENV population genetic characteristics in Yogyakarta, which are useful as baseline data for the AWED trial and the future DENV surveillance in the city in the presence of a Wolbachia-infected Ae. aegypti population.


Assuntos
Culicidae , Vírus da Dengue , Dengue , Wolbachia , Animais , Cidades , Dengue/epidemiologia , Genética Populacional , Genótipo , Humanos , Indonésia/epidemiologia , Filogenia , Sorogrupo , Wolbachia/genética
6.
Sci Rep ; 12(1): 9890, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701454

RESUMO

Dengue exhibits focal clustering in households and neighborhoods, driven by local mosquito population dynamics, human population immunity, and fine scale human and mosquito movement. We tested the hypothesis that spatiotemporal clustering of homotypic dengue cases is disrupted by introduction of the arbovirus-blocking bacterium Wolbachia (wMel-strain) into the Aedes aegypti mosquito population. We analysed 318 serotyped and geolocated dengue cases (and 5921 test-negative controls) from a randomized controlled trial in Yogyakarta, Indonesia of wMel deployments. We find evidence of spatial clustering up to 300 m among the 265 dengue cases (3083 controls) in the untreated trial arm. Participant pairs enrolled within 30 days and 50 m had a 4.7-fold increase (compared to 95% CI on permutation-based null distribution: 0.1, 1.2) in the odds of being homotypic (i.e. potentially transmission-related) as compared to pairs occurring at any distance. In contrast, we find no evidence of spatiotemporal clustering among the 53 dengue cases (2838 controls) resident in the wMel-treated arm. Introgression of wMel Wolbachia into Aedes aegypti mosquito populations interrupts focal dengue virus transmission leading to reduced case incidence; the true intervention effect may be greater than the 77% efficacy measured in the primary analysis of the Yogyakarta trial.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Análise por Conglomerados , Vírus da Dengue/genética , Humanos , Indonésia/epidemiologia , Controle Biológico de Vetores , Wolbachia/genética
7.
PLoS Negl Trop Dis ; 16(4): e0010284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442957

RESUMO

The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative abundance of Ae. aegypti and Ae. albopictus before, during and after wMel-introgression. Between March 2015 and March 2020, 60,084 BG trap collections yielded 478,254 Ae. aegypti and 17,623 Ae. albopictus. Between treatment arms there was no measurable difference in Ae. aegypti relative abundance before or after wMel-deployments, with a count ratio of 0.96 (95% CI 0.76, 1.21) and 1.00 (95% CI 0.85, 1.17) respectively. More Ae. aegypti were caught per trap per week in the wMel-intervention arm compared to the control arm during wMel deployments (count ratio 1.23 (95% CI 1.03, 1.46)). Between treatment arms there was no measurable difference in the Ae. albopictus population size before, during or after wMel-deployment (overall count ratio 1.10 (95% CI 0.89, 1.35)). We also compared insecticide resistance phenotypes of Ae. aegypti in the first and second years after wMel-deployments. Ae. aegypti field populations from wMel-treated and untreated arms were similarly resistant to malathion (0.8%), permethrin (1.25%) and cyfluthrin (0.15%) in year 1 and year 2 of the trial. In summary, we found no between-arm differences in the relative abundance of Ae. aegypti or Ae. albopictus prior to or after wMel introgression, and no between-arm difference in Ae. aegypti insecticide resistance phenotypes. These data suggest neither Aedes abundance, nor insecticide resistance, confounded the epidemiological outcomes of the AWED trial.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Dengue/epidemiologia , Dengue/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
8.
N Engl J Med ; 384(23): 2177-2186, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34107180

RESUMO

BACKGROUND: Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia pipientis are less susceptible than wild-type A. aegypti to dengue virus infection. METHODS: We conducted a cluster-randomized trial involving releases of wMel-infected A. aegypti mosquitoes for the control of dengue in Yogyakarta, Indonesia. We randomly assigned 12 geographic clusters to receive deployments of wMel-infected A. aegypti (intervention clusters) and 12 clusters to receive no deployments (control clusters). All clusters practiced local mosquito-control measures as usual. A test-negative design was used to assess the efficacy of the intervention. Patients with acute undifferentiated fever who presented to local primary care clinics and were 3 to 45 years of age were recruited. Laboratory testing was used to identify participants who had virologically confirmed dengue (VCD) and those who were test-negative controls. The primary end point was symptomatic VCD of any severity caused by any dengue virus serotype. RESULTS: After successful introgression of wMel into the intervention clusters, 8144 participants were enrolled; 3721 lived in intervention clusters, and 4423 lived in control clusters. In the intention-to-treat analysis, VCD occurred in 67 of 2905 participants (2.3%) in the intervention clusters and in 318 of 3401 (9.4%) in the control clusters (aggregate odds ratio for VCD, 0.23; 95% confidence interval [CI], 0.15 to 0.35; P = 0.004). The protective efficacy of the intervention was 77.1% (95% CI, 65.3 to 84.9) and was similar against the four dengue virus serotypes. The incidence of hospitalization for VCD was lower among participants who lived in intervention clusters (13 of 2905 participants [0.4%]) than among those who lived in control clusters (102 of 3401 [3.0%]) (protective efficacy, 86.2%; 95% CI, 66.2 to 94.3). CONCLUSIONS: Introgression of wMel into A. aegypti populations was effective in reducing the incidence of symptomatic dengue and resulted in fewer hospitalizations for dengue among the participants. (Funded by the Tahija Foundation and others; AWED ClinicalTrials.gov number, NCT03055585; Indonesia Registry number, INA-A7OB6TW.).


Assuntos
Aedes/microbiologia , Controle de Doenças Transmissíveis/métodos , Dengue/transmissão , Mosquitos Vetores , Wolbachia , Adolescente , Adulto , Aedes/virologia , Animais , Criança , Pré-Escolar , Dengue/diagnóstico , Dengue/epidemiologia , Dengue/prevenção & controle , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Incidência , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Adulto Jovem
9.
Gates Open Res ; 4: 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32803130

RESUMO

Background: Ae. aegypti mosquitoes stably transfected with the intracellular bacterium Wolbachia pipientis ( wMel strain) have been deployed for biocontrol of dengue and related arboviral diseases in multiple countries. Field releases in northern Australia have previously demonstrated near elimination of local dengue transmission from Wolbachia-treated communities, and pilot studies in Indonesia have demonstrated the feasibility and acceptability of the method. We conducted a quasi-experimental trial to evaluate the impact of scaled Wolbachia releases on dengue incidence in an endemic setting in Indonesia. Methods: In Yogyakarta City, Indonesia, following extensive community engagement, wMel Wolbachia-carrying mosquitoes were released every two weeks for 13-15 rounds over seven months in 2016-17, in a contiguous 5 km 2 area (population 65,000). A 3 km 2 area (population 34,000) on the opposite side of the city was selected a priori as an untreated control area. Passive surveillance data on notified hospitalised dengue patients was used to evaluate the epidemiological impact of Wolbachia deployments, using controlled interrupted time-series analysis. Results: Rapid and sustained introgression of wMel Wolbachia into local Ae. aegypti populations was achieved. Thirty-four dengue cases were notified from the intervention area and 53 from the control area (incidence 26 vs 79 per 100,000 person-years) during 24 months following Wolbachia deployment. This corresponded in the regression model to a 73% reduction in dengue incidence (95% confidence interval 49%,86%) associated with the Wolbachia intervention. Exploratory analysis including 6 months additional post-intervention observations showed a small strengthening of this effect (30 vs 115 per 100,000 person-years; 76% reduction in incidence, 95%CI 60%,86%). Conclusions: We demonstrate a significant reduction in dengue incidence following successful introgression of Wolbachia into local Ae. aegypti populations in an endemic setting in Indonesia. These findings are consistent with previous field trials in northern Australia, and support the effectiveness of this novel approach for dengue control.

10.
Trials ; 21(1): 429, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450914

RESUMO

BACKGROUND: The AWED (Applying Wolbachia to Eliminate Dengue) trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Yogyakarta, Indonesia, with the aim of measuring the efficacy of Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting. Enrolment began in January 2018 and is ongoing. The original study protocol was published in April 2018. Here, we describe amendments that have been made to the study protocol since commencement of the trial. METHODS: The key protocol amendments are (1) a revised study duration with planned end of participant enrolment in August 2020, (2) the addition of new secondary objectives (i) to estimate serotype-specific efficacy of the Wolbachia intervention and (ii) to compare Ae. aegypti abundance in intervention versus untreated clusters, (3) an additional exposure classification for the per-protocol analysis where the Wolbachia exposure index is calculated using only the cluster-level Wolbachia prevalence in the participant's cluster of residence, (4) power re-estimation using a multinomial sampling method that better accounts for randomness in sampling, and (5) the addition of two trial stopping rules to address the potential for persistently low rates of virologically confirmed dengue case enrolment and Wolbachia contamination into untreated clusters. Additional minor changes to the protocol are also described. DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of Wolbachia in reducing dengue incidence. Enrolment in the trial will conclude this year (2020) and results will be reported shortly thereafter. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT03055585. Registered on 14 February 2017. Last updated 22 March 2020.


Assuntos
Aedes/microbiologia , Vírus da Dengue/patogenicidade , Dengue/prevenção & controle , Mosquitos Vetores/microbiologia , Wolbachia/fisiologia , Animais , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Humanos , Incidência , Indonésia/epidemiologia , Controle Biológico de Vetores/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31100967

RESUMO

Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti.


Assuntos
Aedes/microbiologia , Agentes de Controle Biológico , Vírus da Dengue/isolamento & purificação , Mosquitos Vetores , Wolbachia , Animais , Cidades , Feminino , Indonésia , Estações do Ano , Sorogrupo
12.
Am J Trop Med Hyg ; 99(5): 1299-1307, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30226138

RESUMO

Dengue is endemic in Indonesia. Here, we describe the epidemiology of dengue in the city of Yogyakarta, Central Java, as a prelude to implementation of a cluster-randomized trial of Wolbachia for the biocontrol of arboviral transmission. Surveillance records from 2006 to 2016 demonstrate seasonal oscillations of dengue incidence with varying magnitude. Two lines of evidence demonstrate a high force of infection; the hospitalized case burden of patients diagnosed with dengue hemorrhagic fever or dengue shock syndrome over the last decade consisted predominantly of children/adolescents, and a serosurvey of 314 healthy children aged 1-10 years found 68% possessed dengue virus-neutralizing antibodies. Finally, a mobility survey indicated children aged 1-10 years, and particularly 1-5 year-olds, spent most of their daytime hours at home. These findings inform the design of clinical trials to measure the impact of novel vector control methods such as Wolbachia introgression into Aedes aegypti mosquitoes, by providing baseline data on disease incidence and identifying subpopulations for recruitment into prospective studies of dengue virus infection and disease. The mobility survey findings indicate that in cluster trials of interventions applied at the community level, young children can reasonably be expected to spend most of their exposure time, in epidemiological terms, within the treatment arm to which they were randomized.


Assuntos
Aedes/virologia , Dengue/epidemiologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Dengue/imunologia , Vírus da Dengue , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Indonésia/epidemiologia , Lactente , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Soroepidemiológicos , Inquéritos e Questionários
13.
Trials ; 19(1): 302, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855331

RESUMO

BACKGROUND: Dengue and other arboviruses transmitted by Aedes aegypti mosquitoes, including Zika and chikungunya, present an increasing public health challenge in tropical regions. Current vector control strategies have failed to curb disease transmission, but continue to be employed despite the absence of robust evidence for their effectiveness or optimal implementation. The World Mosquito Program has developed a novel approach to arbovirus control using Ae. aegypti stably transfected with Wolbachia bacterium, with a significantly reduced ability to transmit dengue, Zika and chikungunya in laboratory experiments. Modelling predicts this will translate to local elimination of dengue in most epidemiological settings. This study protocol describes the first trial to measure the efficacy of Wolbachia in reducing dengue virus transmission in the field. METHODS/DESIGN: The study is a parallel, two-arm, non-blinded cluster randomised controlled trial conducted in a single site in Yogyakarta, Indonesia. The aim is to determine whether large-scale deployment of Wolbachia-infected Ae. aegypti mosquitoes leads to a measurable reduction in dengue incidence in treated versus untreated areas. The primary endpoint is symptomatic, virologically confirmed dengue virus infection of any severity. The 26 km2 study area was subdivided into 24 contiguous clusters, allocated randomly 1:1 to receive Wolbachia deployments or no intervention. We use a novel epidemiological study design, the cluster-randomised test-negative design trial, in which dengue cases and arbovirus-negative controls are sampled concurrently from among febrile patients presenting to a network of primary care clinics, with case or control status classified retrospectively based on the results of laboratory diagnostic testing. Efficacy is estimated from the odds ratio of Wolbachia exposure distribution (probability of living in a Wolbachia-treated area) among virologically confirmed dengue cases compared to test-negative controls. A secondary per-protocol analysis allows for individual Wolbachia exposure levels to be assessed to account for movements outside the cluster and the heterogeneity in local Wolbachia prevalence among treated clusters. DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of Wolbachia in reducing dengue incidence. Together with observational evidence that is accumulating from pragmatic deployments of Wolbachia in other field sites, this will provide valuable data to estimate the effectiveness of this novel approach to arbovirus control, inform future cost-effectiveness estimates, and guide plans for large-scale deployments in other endemic settings. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT03055585 . Registered on 14 February 2017.


Assuntos
Culicidae/microbiologia , Vírus da Dengue/patogenicidade , Dengue/prevenção & controle , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Wolbachia/fisiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Feminino , Humanos , Incidência , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
14.
Am J Epidemiol ; 187(9): 2021-2028, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741576

RESUMO

Cluster-randomized controlled trials are the gold standard for assessing efficacy of community-level interventions, such as vector-control strategies against dengue. We describe a novel cluster-randomized trial methodology with a test-negative design (CR-TND), which offers advantages over traditional approaches. This method uses outcome-based sampling of patients presenting with a syndrome consistent with the disease of interest, who are subsequently classified as test-positive cases or test-negative controls on the basis of diagnostic testing. We used simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-negative approach. We demonstrated that, provided study arms are balanced for both test-negative and test-positive illness at baseline and that other test-negative design assumptions are met, the efficacy estimates closely match true efficacy. Analytical considerations for an odds ratio-based effect estimate arising from clustered data and potential approaches to analysis are also discussed briefly. We concluded that application of the test-negative design to certain cluster-randomized trials could increase their efficiency and ease of implementation.


Assuntos
Dengue/prevenção & controle , Projetos de Pesquisa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...