Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 190, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28314356

RESUMO

Optical properties of high-frequency Au gratings with a fixed period (296.6 ± 0.5 nm) and a variable modulation depth are studied using measurements of spectral and angular dependence of transmission and reflection of polarized light in order to build the dispersion curves of excited optical modes and to identify their types. It was shown that in gratings with small modulation depth only propagating surface plasmon-polaritons (SPP) modes were observed. With increasing of modulation depth, the intensity of SPP decreases and localized plasmon (LP) resonance appears, which is more intense at small incident angles, and overlaps with the SPP modes. For grating with isolated grooves (nanowires), mostly LP resonance is observed. After additional deposition of gold onto grating with isolated grooves, the intensity of the SPP mode increases again, and the LP band maximum shifts to longer wavelengths.

2.
Nanoscale Res Lett ; 11(1): 535, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27910072

RESUMO

The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δn, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δn decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

3.
Nanoscale Res Lett ; 11(1): 277, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27255897

RESUMO

The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were produced by evaporation of Si monoxide (SiO) powder in vacuum and oblique deposition on Si wafer, and then the deposited silicon oxide (SiOx) films were annealed in the vacuum at 975 °C to grow nc-Si. It was found that the PM effect in the PL is observed only after passivation of nanostructures: during etching in HF solution, the initial symmetric nc-Si becomes asymmetric elongated. It was also found that in investigated nanostructures, there is a defined orientational dependence of the PL polarization degree (ρ) in the sample plane which correlates with the orientation of SiOx nanocolumns, forming the structure of the porous layer. The increase of the ρ values in the long-wavelength spectral range with time of HF treatment can be associated with increasing of the anisotropy of large Si nanoparticles. The PM effect for this spectral interval can be described by the dielectric model. In the short-wavelength spectral range, the dependence of the ρ values agrees qualitatively with the quantum confinement effect.

4.
Nanoscale Res Lett ; 10(1): 497, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26714859

RESUMO

This study reports on the employment of the interference lithography (IL) technique, using photoresist based on the chalcogenide glass (ChG) films, for fabrication of one-dimensional (gratings) and two-dimensional (arrays) periodic plasmonic structures on the surface of glass plates. The IL technique was optimized for patterning of the Au and Al layers and formation of gratings and arrays with a spatial frequency of 2000 mm(-1). Optical properties of obtained structures were studied using measurements of spectral and angular dependence of transmission and reflection of polarized light. It was shown that the spectral and angular position of the surface plasmon polariton and local surface plasmon resonance, which are observed in these samples, can be adjusted over a wide range by selecting the geometric parameters of structures and technological modes of their manufacturing.

5.
Nanoscale Res Lett ; 10: 83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852379

RESUMO

The reversible and transient photostimulated structural changes in annealed chalcogenide glass (ChG) layers were used to form interference periodic structures on semiconductor surfaces and metal films. It was shown that negative-action etchants based on amines dissolve illuminated parts of a chalcogenide film, i.e., act as positive etchants. The diffraction gratings and 2-D interference structures on germanium ChGs - more environmentally acceptable compounds than traditionally used arsenic chalcogenides - were recorded, and their characteristics were studied.

6.
Nanoscale Res Lett ; 9(1): 165, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24708532

RESUMO

We investigated plasmon-assisted enhancement of emission from silicon nanoparticles (ncs-Si) embedded into porous SiOx matrix in the 500- to 820-nm wavelength range. In the presence in the near-surface region of gold nanoisland film, ncs-Si exhibited up to twofold luminescence enhancement at emission frequencies that correspond to the plasmon resonance frequency of Au nanoparticles. Enhancement of the photoluminescence (PL) intensity was attributed to coupling with the localized surface plasmons (LSPs) excited in Au nanoparticles and to increase in the radiative decay rate of ncs-Si. It has been shown that spontaneous emission decay rate of ncs-Si modified by thin Au film over the wide emission spectral range was accelerated. The emission decay rate distribution was determined by fitting the experimental decay curves to the stretched exponential model. The observed increase of the PL decay rate distribution width for the Au-coated nc-Si-SiOx sample in comparison with the uncoated one was explained by fluctuations in the surface-plasmon excitation rate. PACS: 78. 67. Bf; 78.55.-m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...