Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(38): 89180-89196, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442939

RESUMO

Atmospheric particulate matter smaller than 2.5 micron (PM2.5) was evaluated at four sites in the lower southern part of Thailand during 2019-2020 to understand the impact of PM2.5 transport from peatland fires in Indonesia on air quality during the southwest monsoon season. Mass concentration and chemical bound-PM, including carbon composition, e.g., organic carbon (OC) and elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and inorganic elements, were analyzed. The PM2.5 emission sources were identified by principal components analysis (PCA). The average mass concentrations of PM2.5 in the normal period, which represents clean background air, from four sites was 3.5-5.1 µg/m3, whereas during the haze period, it rose to 5.4-13.5 µg/m3. During the haze period, both OC and EC were 3.5 times as high as in the normal period. The average total PAHs and BaP-TEQ of PM2.5 during the haze period were ~ 1.3-1.7 and ~ 1.2-1.9 times higher than those in the normal period. The K concentrations significantly increased during haze periods. SO42- dominated throughout the year. The effects of external sources, especially the transboundary haze from peatland fires, were significantly enhanced, because the background air in the study locations was generally clean. PCA indicated that vehicle emission, local biomass burning, and secondary particles played a key role during normal period, whereas open biomass burning dominated during the haze phenomena. This was consistent with the OC/EC and PAH diagnostic ratios. Backward trajectories confirmed that the sources of PM during the haze period were predominantly peatland fires in Sumatra, Indonesia, due to southwest wind.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Tailândia , Análise de Componente Principal , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , Estações do Ano , Carbono/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise
2.
Heliyon ; 9(3): e14261, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938473

RESUMO

Many of the current atmospheric environmental problems facing Thailand are linked to air pollution that is largely derived from biomass burning. Different parts of Thailand have distinctive sources of biomass emissions that affect air quality. The main contributors to atmospheric particulate matter (PM), especially the PM2.5 fraction in Thailand, were highlighted in a recent study of PM derived from biomass burning. This review is divided into six sections. Section one is an introduction to biomass burning in Thailand. Section two covers issues related to biomass burning for each of the four main regions in Thailand, including Northern, Northeastern, Central, and Southern Thailand. In northern Thailand, forest fires and the burning of crop residues have contributed to air quality in the past decade. The northeast region is mainly affected by the burning of agricultural residues. However, the main contributor to PM in the Bangkok Metropolitan Region is motor vehicles and crop burning. In Southern Thailand, the impact of agoindustries, biomass combustion, and possible agricultural residue burning are the primary sources, and cross-border pollution is also important. The third section concerns the effect of biomass burning on human health. Finally, perspectives, new challenges, and policy recommendations are made concerning improving air quality in Thailand, e.g., forest fuel management and biomass utilization. The overall conclusions point to issues that will have a long-term impact on achieving a blue sky over Thailand through the development of coherent policies and the management of air pollution and sharing this knowledge with a broader audience.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36834174

RESUMO

This study deals with haze characteristics under the influence of the cold surge and sea breeze for Greater Bangkok (GBK) in 2017-2022, including haze intensity and duration, meteorological classification for haze, and the potential effects of secondary aerosols and biomass burning. A total of 38 haze episodes and 159 haze days were identified. The episode duration varies from a single day to up to 14 days, suggesting different pathways of its formation and evolution. Short-duration episodes of 1-2 days are the most frequent with 18 episodes, and the frequency of haze episodes decreases as the haze duration increases. The increase in complexity in the formation of relatively longer episodes is suggested by a relatively higher coefficient of variation for PM2.5. Four meteorology-based types of haze episodes were classified. Type I is caused by the arrival of the cold surge in GBK, which leads to the development of stagnant conditions favorable for haze formation. Type II is induced by sea breeze, which leads to the accumulation of air pollutants due to its local recirculation and development of the thermal internal boundary layer. Type III consists of the haze episodes caused by the synergetic effect of the cold surge and sea breeze while Type IV consists of short haze episodes that are not affected by either the cold surge or sea breeze. Type II is the most frequent (15 episodes), while Type III is the most persistent and most polluted haze type. The spread of haze or region of relatively higher aerosol optical depth outside GBK in Type III is potentially due to advection and dispersion, while that in Type IV is due to short 1-day episodes potentially affected by biomass burning. Due to cold surge, the coolest and driest weather condition is found under Type I, while Type II has the most humid condition and highest recirculation factor due to the highest average sea breeze duration and penetration. The precursor ratio method suggests the potential effect of secondary aerosols on 34% of the total haze episodes. Additionally, biomass burning is found to potentially affect half of the total episodes as suggested by the examination of back trajectories and fire hotspots. Based on these results, some policy implications and future work are also suggested.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Monitoramento Ambiental/métodos , Tailândia , Poluentes Atmosféricos/análise , Aerossóis/análise , China , Poluição do Ar/análise , Estações do Ano
4.
J Environ Sci (China) ; 124: 253-267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182135

RESUMO

Distribution of PM0.1, PM1 and PM2.5 particle- and gas-polycyclic aromatic hydrocarbons (PAHs) during the 2019 normal, partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks. PM1 was the predominant component, during partial and strong haze periods, accounting for 45.1% and 52.9% of total suspended particulate matter, respectively, while during normal period the contribution was only 34.0%. PM0.1 concentrations, during the strong haze period, were approximately 2 times higher than those during the normal period. Substantially increased levels of particle-PAHs for PM0.1, PM1 and PM2.5 were observed during strong haze period, about 3, 5 and 6 times higher than those during normal period. Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM2.5. Average total Benzo[a]Pyrene Toxic Equivalency Quotients (BaP-TEQ) in PM0.1, PM1 and PM2.5 during haze periods were about 2-6 times higher than in the normal period. The total accumulated Incremental Lifetime Cancer Risks (ILCRs) in PM0.1, PM1 and PM2.5 for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in non-haze scenario, indicating a higher potential carcinogenic risk. These observations suggest PM0.1, PM1 and PM2.5 were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires. This leads to an increase in the volume of smoke aerosol, exerting a significant impact on air quality in southern Thailand, as well as many other countries in lower southeast Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Benzo(a)pireno , Carcinógenos/toxicidade , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fumaça , Tailândia
5.
J Hazard Mater ; 425: 127986, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34902726

RESUMO

Ambient nanoparticles, or PM0.1 and thirteen trace elements (Al, Ba, K, Fe, Cr, Cu, Ni, Na, Mn, Mg, Ti, Pb, and Zn) were studied in Hat Yai, Thailand during the year 2018. The annual average PM0.1 mass concentration was 8.45 ± 1.93 µg/m3. The PM0.1 levels in Hat Yai were similar to those in large cities in South East Asia, such as Hanoi and North Sumatra, but lower than other cities in Thailand. The sum of thirteen trace elements was 207.83 ± 17.06 ng/m3 and was dominated by Na, Zn, K, Mg, and Al. The highest concentration of elements occurred in the pre-monsoon season followed by the dry and monsoon seasons. A principal component analysis (PCA) indicated that PM0.1 comes from motor vehicles, crustal dust, industrial and biomass burning. The PM0.1 was dominated in the pre-monsoon season, suggesting that biomass burning from the southwest direction could cause an increase in the levels of Cr, Ti, and Ni. The total cancer risk from all the carcinogenic elements was 1.98 × 10-6 in adults, indicating that the carcinogenic risk is in a tolerable risk assessment range. The increasing levels of PM0.1 during transboundary haze pollution and local source emissions are a concern.


Assuntos
Poluentes Atmosféricos , Nanopartículas , Oligoelementos , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Material Particulado/análise , Medição de Risco , Estações do Ano , Tailândia , Oligoelementos/análise
6.
Environ Pollut ; 260: 114031, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32014745

RESUMO

In this study, size-fractionated particulate matters (PM) down to ultrafine (PM0.1) particles were collected using a cascade air sampler with a PM0.1 stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM2.5-10 being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM0.5-1.0 fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM0.5-1.0 and PM1.0-2.5) and coarse (PM2.5-10 and PM>10) fractions. The OC fraction in PM0.1 was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R2 = 0.824-0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R2 = 0.093-0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Aerossóis , Biomassa , Carbono , Cidades , Indonésia , Tamanho da Partícula , Estações do Ano , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...