Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 3(1): 647, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159138

RESUMO

The Ediacaran period (635-541 Ma) was a time of major environmental change, accompanied by a transition from a microbial world to the animal world we know today. Multicellular, macroscopic organisms preserved as casts and molds in Ediacaran siliciclastic rocks are preserved worldwide and provide snapshots of early organismal, including animal, evolution. Remarkable evolutionary advances are also witnessed by diverse cellular and subcellular phosphatized microfossils described from the Doushantuo Formation in China, the only source showing a diversified assemblage of microfossils. Here, we greatly extend the known distribution of this Doushantuo-type biota in reporting an Ediacaran Lagerstätte from Laurentia (Portfjeld Formation, North Greenland), with phosphatized animal-like eggs, embryos, acritarchs, and cyanobacteria, the age of which is constrained by the Shuram-Wonoka anomaly (c. 570-560 Ma). The discovery of these Ediacaran phosphatized microfossils from outside East Asia extends the distribution of the remarkable biota to a second palaeocontinent in the other hemisphere of the Ediacaran world, considerably expanding our understanding of the temporal and environmental distribution of organisms immediately prior to the Cambrian explosion.


Assuntos
Evolução Biológica , Biota , Fósseis , Animais , Sedimentos Geológicos , Groenlândia
2.
PLoS One ; 9(12): e114743, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493546

RESUMO

The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.


Assuntos
Organismos Aquáticos , Evolução Biológica , Animais , Regiões Antárticas , Biodiversidade , Bivalves , Fósseis , Gastrópodes , Moluscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...